
Università degli Studi di Udine

Dipartimento di Scienze Matematiche, Informatiche e
Fisiche

Dottorato di Ricerca in Informatica e Scienze
Matematiche e Fisiche

Ph.D. Thesis

Compressed Computation for Text
Indexing

Candidate:

Nicola Prezza

Supervisor:

Prof. Alberto Policriti

Cycle XXIX — Academic Year 2016



Author’s e-mail: prezza.nicola@spes.uniud.it

Author’s address:

Dipartimento di Scienze Matematiche, Informatiche e Fisiche
Università degli Studi di Udine
Via delle Scienze, 206
33100 Udine
Italia



Acknowledgments

First of all, I would like to thank my parents for supporting me through all the long path
that went from by bachelor to this PhD. Thanks for agreeing with my choices without
questioning (well, not too much) why I was deciding to spend three more years at the
university!

Special thanks go also to my supervisor Alberto Policriti for many stimulating discus-
sions and for believing in me, starting from that time I asked him to assign me a bachelor
thesis on Java graphical interfaces because I was running out of time for graduating (by the
way, he did not give me that Java thesis. He instead assigned me an interesting problem
related to hashing, which resulted—after five years—in this thesis).

Thanks to many colleagues for extremely stimulating discussions on algorithms, data
structures, and compression: Simon Puglisi, Travis Gagie, Simon Gog, Djamal Belaz-
zougui, Gabriele Fici, Nicola Gigante, Fabio Cunial, Jouni Sirén, and many others (sorry
for not reporting all the names here, this thesis was already too long).

To conclude, thanks to all my friends here in Udine (and surroundings) for all the great
times we had together in these years. Without you this thesis would have been two times
longer, and nobody would have read (and accepted to review) it.





Abstract

This thesis deals with space-efficient algorithms to compress and index texts. The aim
of compression is to reduce the size of a text by exploiting regularities such as repeti-
tions or skewed character distributions. Indexing, on the other hand, aims at accelerating
pattern matching queries (such as locating all occurrences of a pattern) with the help of
data structures (indexes) on the text. Despite being apparently distant concepts, com-
pression and indexing are deeply interconnected: both exploit the inner structure of the
text to, respectively, reduce its size and speed up pattern matching queries. It should not
be surprising, therefore, that compression and indexing can be “forced” (actually, quite
naturally) to coincide: compressed full-text indexes support fast pattern matching queries
while taking almost the same size of the compressed text.

In the last two decades, several compressed text indexes based on the most efficient
text compressors have been designed. These indexes can be roughly classified in two main
categories: those based on suffix-sorting (Burrows-Wheeler transform indexes, compressed
suffix arrays/trees) and those based on the replacement of repetitions by pointers (Lempel-
Ziv indexes, grammar indexes, block trees). Indexes based on a combination of the two
techniques have also been proposed. In general, suffix sorting-based methods support very
fast queries at the expense of space usage. This is due to several factors, ranging from
weak compression methods (e.g. entropy compression, used in early FM-indexes, is not
able to capture long repetitions), to heavy structures (e.g. suffix array sampling) flanked
to the compressed text representation to speed up queries. The second class of indexes, on
the other hand, offers strong compression rates, achieving up to exponential compression
on very repetitive texts at the expense of query times—often quadratic in the pattern
length or—in the worst case—linear in the text length.

Among the most used compression techniques, run-length compression of the Burrows-
Wheeler transform and Lempel-Ziv parsing (LZ77) have been proved to be superior in
the compression of very repetitive datasets. In this thesis we show that these two tools
can be combined in a single index gathering the best features of the above-discussed
indexes: fast queries (linear in the pattern length and logarithmic in the text length), and
strong compression rates (up to exponential compression can be achieved). We describe an
efficient implementation of our index and compare it with state of the art alternatives. Our
solution turns out to be as space-efficient as the lightest index described in the literature
while supporting queries up to three orders of magnitude faster.

Apart from index definition and design, a third concern regards index construction
complexity. Often, the input text is too big to be fully loaded into main memory. Even
when this is feasible, classic compression/indexing algorithms use heavy data structures
such as suffix trees/arrays which can easily take several times the space of the text. This is
unsatisfactory, especially in cases where (i) the text is streamed and not stored anywhere
(e.g. because of its size) and (ii) the compressed text is small enough to fit into main
memory. A further contribution of this thesis consists in five algorithms compressing text
within compressed working space and in two recompression techniques (i.e. algorithms to



convert between different compression formats without full decompression). The complete
picture we offer consists of a set of algorithms to space-efficiently convert among:

• the plain text

• two compressed self-indexes, and

• three compressed-file formats (entropy, LZ77, and run-length BWT)

The general idea behind all our compression algorithms is to read text characters from
left to right and build a compressed dynamic Burrows-Wheeler transform of the reversed
text. This structure is augmented with a dynamic suffix array sampling to support fast
locate of text substrings. We employ three types of suffix array sampling: (i) evenly-spaced
(ii) based on Burrows-Wheeler transform equal-letter runs, and (iii) based on Lempel-Ziv
factors. Strategy (i) allows us to achieve entropy-compressed working space. Strategies
(ii) and (iii) are novel and allow achieving a space usage proportional to the output size
(i.e. the compressed file/index).

As a last contribution of this thesis, we turn our attention to a practical and usable
implementation of our suite of algorithmic tools. We introduce DYNAMIC, an open-source
C++11 library implementing dynamic compressed data-structures. We prove almost-
optimal theoretical bounds for the resources used by our structures, and show that our
theoretical predictions are empirically tightly verified in practice. The implementation of
the compression algorithms described in this thesis using DYNAMIC meets our expectations:
on repetitive datasets our solutions turn out to be up to three orders of magnitude more
space-efficient than state-of-the art algorithms performing the same tasks.



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Papers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Unpublished Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Indexing and Compression: a Tale of Time and Space 9

2.1 A Gentle Introduction to Compressed Indexing . . . . . . . . . . . . . . . . 9

2.2 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Burrows-Wheeler Transform . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Lempel-Ziv Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.4 Full-Text Indexing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.5 Measuring Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.6 Model of Computation . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Bitvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Wavelet Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.3 Run-Length Compressed Strings . . . . . . . . . . . . . . . . . . . . 33

2.3.4 Geometric Data Structures . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Compressed Full-Text Indexing . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.1 FM-Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4.2 Run-Length Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.3 LZ-Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5 Online Construction of the Burrows-Wheeler Transform . . . . . . . . . . . 55

3 Computing the BWT in Compressed Working Space 59

3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 High-Order Compressed Working Space . . . . . . . . . . . . . . . . . . . . 60

3.2.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.2 Cw-bwt Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Run-Length Compressed Working Space . . . . . . . . . . . . . . . . . . . . 67

3.3.1 The Searchable Partial Sums with Indels Problem . . . . . . . . . . 68

3.3.2 Dynamic Gap-Encoded Bitvectors . . . . . . . . . . . . . . . . . . . 69

3.3.3 A Dynamic Run-Length BWT . . . . . . . . . . . . . . . . . . . . . 69



iv Contents

4 Computing LZ77 in Compressed Working Space 71

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Zero-Order Compressed Working Space . . . . . . . . . . . . . . . . . . . . 72

4.2.1 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.2 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3 Run-Length Compressed Working Space . . . . . . . . . . . . . . . . . . . . 76

4.3.1 First Algorithm: SA Sampling Based on BWT Runs . . . . . . . . . 77

4.3.2 Second Algorithm: SA Sampling Based on LZ77 Factors . . . . . . 83

5 Compressed Computation: Recompression and Indexing 89

5.1 Repetitivity Measures: The r-z-g* Relations . . . . . . . . . . . . . . . . . . 89

5.2 Recompression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.2 From RLBWT to LZ77 . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.2.3 From LZ77 to RLBWT . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Indexes For Highly Repetitive Text Collections . . . . . . . . . . . . . . . . 98

5.3.1 Related Work: RLBWT-, LZ-, and Grammar- Indexes . . . . . . . . 99

5.3.2 The s-rlbwt Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3.3 The slz-rlbwt Index . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 From Theory to Practice: the DYNAMIC library 107

6.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 The Core: Searchable Partial Sums with Inserts . . . . . . . . . . . . . . . . 108

6.2.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.2 Theoretical Guarantees . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Plug and Play with Dynamic Structures . . . . . . . . . . . . . . . . . . . . 110

6.3.1 Gap-Encoded Bitvectors . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.2 Succinct Bitvectors and Compressed Strings . . . . . . . . . . . . . . 111

6.3.3 Dynamic FM-Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4 Compression Algorithms, in Practice . . . . . . . . . . . . . . . . . . . . . . 113

6.4.1 cw-bwt: High-Order Compressed BWT . . . . . . . . . . . . . . . . 114

6.4.2 rle-bwt: Run-Length Compressed BWT . . . . . . . . . . . . . . . . 114

6.4.3 h0-lz77: Zero-Order Compressed LZ77 . . . . . . . . . . . . . . . . . 115

6.4.4 rle-lz77: Run-Length Compressed LZ77 . . . . . . . . . . . . . . . . 115

7 Experimental Results 119

7.1 DYNAMIC: Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.1.1 Working Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.1.2 Running Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.2 Repetitive Text Collections . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2.2 Tested Algorithms and Indexes . . . . . . . . . . . . . . . . . . . . . 122

7.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8 Conclusions 157

8.1 Future Directions of Research . . . . . . . . . . . . . . . . . . . . . . . . . . 158



Contents v

Bibliography 161



vi Contents



List of Figures

1.1 Results presented in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Sorted circular permutations of T . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 LF mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Balanced wavelet tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Huffman-shaped wavelet tree . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Wavelet tree-based geometric range data structure . . . . . . . . . . . . . . 36

2.6 Backward search algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Finding primary occurrences in the LZ index . . . . . . . . . . . . . . . . . 49

2.8 Finding secondary occurrences in the LZ index . . . . . . . . . . . . . . . . 50

2.9 Using the LZ78 trie to extract text . . . . . . . . . . . . . . . . . . . . . . . 55

2.10 Online construction of the BWT (a) . . . . . . . . . . . . . . . . . . . . . . 56

2.11 Online construction of the BWT (b) . . . . . . . . . . . . . . . . . . . . . . 57

3.1 Contextualized cw-bwt algorithm . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Data structures used in the cw-bwt algorithm . . . . . . . . . . . . . . . . . 62

3.3 Contextualized rle-bwt algorithm . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Contextualized h0-lz77 algorithm . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 rle-lz77 algorithm, case 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 rle-lz77 algorithm, case 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 rle-lz77 algorithm, case 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.1 Contextualized RLBWT-to-LZ77 algorithm . . . . . . . . . . . . . . . . . . 94

5.2 Contextualized RLBWT-to-LZ77 algorithm . . . . . . . . . . . . . . . . . . 97

5.3 Contextualized slz-rlbwt index construction . . . . . . . . . . . . . . . . . 105

7.1 Memory occupancy of DYNAMIC’s bitvectors . . . . . . . . . . . . . . . . . . 128

7.2 Memory occupancy of DYNAMIC’s gap-encoded bitvector . . . . . . . . . . . 129

7.3 Memory occupancy of DYNAMIC’s succinct bitvector . . . . . . . . . . . . . . 129

7.4 Running times of DYNAMIC’s bitvectors on access queries . . . . . . . . . . 130

7.5 Running times of DYNAMIC’s bitvectors on rank0 queries . . . . . . . . . . . 130

7.6 Running times of DYNAMIC’s bitvectors on rank1 queries . . . . . . . . . . . 131

7.7 Running times of DYNAMIC’s bitvectors on select0 queries . . . . . . . . . . 131

7.8 Running times of DYNAMIC’s bitvectors on select1 queries . . . . . . . . . . 132

7.9 Running times of DYNAMIC’s bitvectors on insert queries . . . . . . . . . . 132

7.10 cw-bwt running times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.11 Compression tools on the datasets cere and para . . . . . . . . . . . . . . . 134

7.12 Compression tools on the datasets influenzae and escherichia . . . . . . 135

7.13 Compression tools on the datasets sdsl and samtools . . . . . . . . . . . . 136

7.14 Compression tools on the datasets boost and bwa . . . . . . . . . . . . . . . 137

7.15 Compression tools on the datasets einstein and earth . . . . . . . . . . . 138



viii List of Figures

7.16 Compression tools on the datasets bush and wikipedia . . . . . . . . . . . 139
7.17 rlcsa and s-rlbwt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.18 rlcsa and s-rlbwt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.19 Disk space of the tested indexes . . . . . . . . . . . . . . . . . . . . . . . . . 142
7.20 Count times of the indexes on cere and para . . . . . . . . . . . . . . . . . 143
7.21 Count times of the indexes on influenzae and escherichia . . . . . . . . 143
7.22 Count times of the indexes on sdsl and samtools . . . . . . . . . . . . . . 144
7.23 Count times of the indexes on boost and bwa . . . . . . . . . . . . . . . . . 144
7.24 Count times of the indexes on einstein and earth . . . . . . . . . . . . . . 145
7.25 Count times of the indexes on bush and wikipedia . . . . . . . . . . . . . . 145
7.26 Locate times of the indexes on cere and para . . . . . . . . . . . . . . . . . 146
7.27 Locate times of the indexes on influenzae and escherichia . . . . . . . . 146
7.28 Locate times of the indexes on sdsl and samtools . . . . . . . . . . . . . . 147
7.29 Locate times of the indexes on boost and bwa . . . . . . . . . . . . . . . . . 147
7.30 Locate times of the indexes on einstein and earth . . . . . . . . . . . . . 148
7.31 Locate times of the indexes on bush and wikipedia . . . . . . . . . . . . . 148
7.32 Count - Resident Set Size of the indexes on cere and para . . . . . . . . . 149
7.33 Count - Resident Set Size of the indexes on influenzae and escherichia . 149
7.34 Count - Resident Set Size of the indexes on sdsl and samtools . . . . . . . 150
7.35 Count - Resident Set Size of the indexes on boost and bwa . . . . . . . . . 150
7.36 Count - Resident Set Size of the indexes on einstein and earth . . . . . . 151
7.37 Count - Resident Set Size of the indexes on bush and wikipedia . . . . . . 151
7.38 Locate - Resident Set Size of the indexes on cere and para . . . . . . . . . 152
7.39 Locate - Resident Set Size of the indexes on influenzae and escherichia 152
7.40 Locate - Resident Set Size of the indexes on sdsl and samtools . . . . . . 153
7.41 Locate - Resident Set Size of the indexes on boost and bwa . . . . . . . . . 153
7.42 Locate - Resident Set Size of the indexes on einstein and earth . . . . . . 154
7.43 Locate - Resident Set Size of the indexes on bush and wikipedia . . . . . . 154
7.44 Locate - same-space comparison of rlcsa and slz-rlbwt on wikipedia . . 155



List of Tables

2.1 Entropy of common texts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Example: 2D grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3 Example: range reporting query on 2D grid . . . . . . . . . . . . . . . . . . 35
2.4 Sampling the BWT (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5 Sampling the BWT (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1 Comparison between BWT construction algorithms . . . . . . . . . . . . . . 60
3.2 Conceptual BWT matrix of the text, with contexts highlighted . . . . . . . 61

6.1 Space occupancy of the data structures used by rle-lz77-1 . . . . . . . . . 116
6.2 Space occupancy of the data structures used by rle-lz77-2 . . . . . . . . . 116

7.1 Size of the datasets before and after 7z-compression . . . . . . . . . . . . . 122
7.2 Tested BWT construction tools . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.3 Tested LZ77 factorization tools . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.4 Tested compressed indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.5 Comparison between the LZ77-512 and LZ77-0 factorizations . . . . . . . . 125



x List of Tables



1
Introduction

1.1 Motivation

The term big data is increasingly being used in many technological areas at an ever-
accelerating pace. With this term one usually indicates the production and analysis of
datasets so big that even their storage is a challenging task with current technologies. Nu-
merous examples come from different domains: massive DNA sequencing projects (popu-
lation genomics), particle accelerators (e.g. CERN), and web databases such as Wikipedia
or GitHub face the problem of manipulating, filtering and storing huge amounts of data
whose sizes quickly increases at a daily rate.

In many cases, such datasets are extremely repetitive and can therefore be consider-
ably reduced in size through compression. At the same time, it is crucial to pre-process
this data in order to speed up subsequent queries—such as searches—on it. The latter
requirement can be met by using so-called full-text indexes, i.e. data structures supporting
search queries in much less time than that required to scan the whole dataset. Although
standard full-text indexes are able to support search queries on the text in optimal time,
they are too big in size and fail in exploiting the compressibility of the dataset. Both
requirements—compression and indexing—can however be satisfied by means of recent
breakthroughs in the field of compressed full-text indexing. A compressed full-text index
is a data structure whose size is close to that of the compressed text and that supports
fast search functionalities (e.g. exact/approximate pattern matching) on it.

Given the importance of compression in domains where big data is predominant, much
research is lately focusing towards the study of methods for efficiently compressing data
and working directly on the compressed files. The term compressed computation indicates
any technique that operates on the compressed data without first (fully) decompressing
it. Results in this field are extremely powerful as they often show that computation and
compression are deeply interconnected: in a sense, by getting rid of redundancy in our
data, we can perform much more efficiently operations on it—compressed text indexes
are an illuminating example of this phenomena. The ability of operating directly on
the compressed data carries enormous advantages. First of all, we can manipulate much
larger datasets: as we will empirically show, repetitive text collections such as software
repositories and sets of same-species genomes, can often be reduced in size by thousands
of times with techniques such as Lempel-Ziv factorization (LZ77) and run-length encoded
Burrows-Wheeler transform (RLBWT). Second, the possibility of fitting the compressed
dataset into main memory translates to much higher processing speeds with respect to
external-memory algorithms.



2 1. Introduction

Compression and indexing, however, come at a significant computational cost. Stan-
dard methods to compress and index data often require to load the full text into main
memory or, even worse, to build heavy data structures such as suffix trees or suffix arrays.
Due to the huge amounts of data that need to be processed, this is often unfeasible. One
solution to this problem is to use offline (semi-) external algorithms that save space in
RAM by increasing the number of accesses to disk. While this is a good solution in most
domains (being fast also in practice), it requires the data to be completely available on
disk. This is not always the case: in applications such as particle-collision experiments or
massive DNA sequencing projects, data is streamed from the source and heavily filtered
prior to storage (it is not even feasible to store all of it on disk). A second drawback of
off-line solutions is that they are inherently static: in the worst case, adding new data to
the archive could require scanning the whole dataset and re-compressing it. This is often
unfeasible in terms of time and space requirements.

A second solution is that of compressing data on-the-fly (on-line / real-time compres-
sion). This concept is equivalent to the idea of maintaining a dynamic and compressed
archive, i.e. a compressed file that can be efficiently updated by appending new data
without first (fully) decompressing it. In this domain, the term efficiently means that
single updates should be supported in time polylogarithmic with respect to the dataset
size. Crucially, the file should never be decompressed during updates: full decompression
would increase update times to linear (w.r.t. the dataset size) and could be prohibitive in
space.

The first contribution of this thesis (Chapters 3 and 4) is to show that data can be
compressed in the streaming model: characters are read left-to-right and previous parts
of the plain text are no longer accessible. We provide algorithms that compress text using
the Burrows-Wheeler transform (Chapter 3) and Lempel-Ziv (Chapter 4) compression
schemes within compressed working space under different measures of compressibility:
zero-order and high-order entropy, the number of runs in the Burrows-Wheeler transform,
and the size of the Lempel-Ziv parsing. Our solutions are based on dynamic compressed
data structures; such structures can be seen as dynamic compressed archives that can be
efficiently updated by single-character extensions.

All the theoretical results discussed have been implemented and extensively tested
on real datasets. The implementations have been carried out using a tool introduced in
Chapter 6 and called DYNAMIC [97]: a C++ library offering efficient implementations of
several dynamic compressed data structures. While several excellent static data structures
libraries are available on the web (see, for example, [15, 43, 95, 96, 120]), little work has
been done on the dynamic side. We believe our library represents a significant first step
in this direction.

After compression, one is usually interested in accessing and manipulating the com-
pressed data. Also in this step we are faced with the same problems discussed above:
we cannot afford decompressing the whole dataset in order to perform queries on it or
to build a data structure, as this would be too space- and time-consuming. Even though
algorithms working directly on compressed representations do exist (e.g. indexing algo-
rithms), they often take as input only one type of compressed representation (e.g. only
LZ77 or RLBWT). The second problem we tackle is therefore that of recompression, i.e.
converting between different compression formats within compressed working space. In
Section 5.2 we show that it is possible to convert between LZ77 and RLBWT formats in
a working space proportional to the sizes of the input and the output.



1.2. Contributions 3

The last problem we tackle is that of indexing repetitive text collections. Existing
indexes for this problem are based on three main compressors: run-length compressed
suffix arrays [77,111] (RLCSAs), LZ77 [65,66,67], and straight-line programs [18,19,20,115]
(SLPs: context-free grammars generating only the text). RLCSAs suffer from the problem
of the suffix array sampling, which introduces a space-time tradeoff: by sampling the suffix
array every k positions, the space of this component is n/k words but locate times are
multiplied by a factor of k. LZ77 indexes are very space-efficient, but suffer from slow
search times (extracting a character from LZ77 could require—in the worst case—to scan
the whole text). Grammar indexes can achieve better compression rates than RLCSAs
at the expenses of query times; they are however inferior to LZ77 compression, and hard
to optimize (computing the smallest grammar is an NP-hard problem, see Section 5.1).
See [16] for a comprehensive experimental evaluation of all these classes of indexes.

In this thesis we propose two compressed full-text indexes for highly repetitive texts
solving some of the problems raised above. The first index, dubbed s-rlbwt (sparse
RLBWT : Section 5.3.2), is an optimal-space run-length FM index significantly reducing
the space of the state-of-the-art rlcsa index [111] (run-length compressed suffix array).
The optimal space usage is achieved by employing a novel sparsification technique in the
representation of the run-length encoded Burrows-Wheeler transform: this is the main
difference between s-rlbwt and the RLFMI index described by Mäkinen et al. [77]. As
for the rlcsa, the weak point of this index is the suffix array sampling. Our second index,
dubbed slz-rlbwt (sparse Lempel-Ziv RLBWT : Section 5.3.3), solves this problem by
combining (a sparse version of) LZ77 and run-length encoding of the BWT. We show
that we can sample the suffix array only at the end of LZ77 phrases while still being
able to quickly locate pattern occurrences. By using the results discussed in Chapters
3 and 4 and in Section 5.2, we moreover show how to build our indexes using (overall)
compressed working space during construction. Efficient implementations of our indexes
are available at [101, 102]. Our implementations have been tested on highly repetitive
datasets generated by downloading versioned archives from different sources: Wikipedia
web pages, GitHub software repositories, and repetitive genomic collections. The scripts
used to generate such datasets are available at [99,103].

The diagram in Figure 1.1 shows the relationships among all the results presented in
this thesis. We will re-propose this diagram throughout the thesis to contextualize the
presented results in our framework of algorithmic tools.

1.2 Contributions

This thesis contains material from six papers, in addition to several unpublished ideas.
The papers will be referred to as papers (i)-(vi) throughout the thesis. Five out of
six papers ((i)-(iii),(v),(vi)) have been published in leading conferences in the field.
Paper (iv) has just been accepted for publication in the journal Algorithmica.

1.2.1 Papers

(i) Alberto Policriti, Nicola Gigante, and Nicola Prezza. Average linear time and
compressed space construction of the Burrows-Wheeler transform. In In-
ternational Conference on Language and Automata Theory and Applications (LATA
2015), pp. 587-598. Springer International Publishing, 2015.



4 1. Introduction

T LZ77(T) slz-rlbwt

Hk-BWT(T) RLBWT(T) s-rlbwt

|LZ77(T )|+
|RLBWT (T )| 5 |RLBWT (T )| 6

|T |Hk(T ) 1 |RLBWT (T )| 4

|T |H0(T ) 3

|T |Hk(T ) 2

|LZ77(T )|+
|RLBWT (T )| 7

|RLBWT (T )| + |T |/d 8

Compression algorithm reading the streamed input

Recompression/indexing algorithm loading whole input in RAM

Working space used by the algorithm

Text representation: plain / compressed / indexed

1

Figure 1.1: The diagram links together all the contributions of this thesis. Vertexes are labeled
with file representations: T is the original text, Hk-BWT(T) is a high-order compressed BWT of
T, LZ77(T) is the LZ77 parsing of T, RLBWT(T) is a run-length compressed BWT of T, and
slz-rlbwt and s-rlbwt are our indexes for highly repetitive text collections. Edges represent our
algorithms converting between different file representations, and are oriented from the input to the
output. Dashed edges indicate that the input is streamed character-by-character from the source
(e.g. disk); in particular, the input is not fully loaded in RAM. Solid edges indicate that the input
needs to be fully available (and loaded in RAM) in order to be processed. Edges are labeled with
the RAM working space used by our construction algorithms. Some more detail:

1- cw-bwt algorithm (Section 3.2) builds a high-order compressed BWT
2- We can extract characters left-to-right from our high-order compressed BWT representation
and easily stream to the output a run-length BWT
3- h0-lz77 algorithm (Section 4.2) builds online the LZ77 factorization of the text in zero-order
compressed space
4- rle-bwt algorithm (Section 3.3) builds online a run-length compressed BWT (of the reversed
text) in a working space proportional to the output
5. In Section 5.2.3 we show how to convert LZ77 to RLBWT using a working space proportional
to the input and output
6. In Section 5.2.2 we show how to convert RLBWT to LZ77 using a working space proportional
to the input (output is streamed to disk)
7- slz-rlbwt index (Section 5.3.3) combines RLBWT and LZ77 and can be built in asymptotically
optimal working space taking as input both these representations
8- s-rlbwt index (Section 5.3.2) combines RLBWT and a sparse suffix array sampled every d
text positions. The index can be built in asymptotically optimal working space taking as input
RLBWT (T )

Note that the diagram implies that both our indexes can be built in asymptotically optimal working

space by processing the streamed text with the pipeline T
4→ RLBWT (T )

6→ LZ77(T ) and using
these two compressed representations to build the indexes.



1.3. Outline 5

(ii) Alberto Policriti and Nicola Prezza. Fast online Lempel-Ziv factorization in
compressed space. In International Symposium on String Processing and Infor-
mation Retrieval (SPIRE 2015), pp. 13-20. Springer International Publishing, 2015.

(iii) Alberto Policriti and Nicola Prezza. Computing LZ77 in Run-Compressed
Space. In Data Compression Conference (DCC 2016). IEEE, 2016.

(iv) Alberto Policriti and Nicola Prezza. LZ77 Computation Based on the Run-
Length Encoded BWT. Algorithmica, 2017 (accepted).

(v) Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza, and Mathieu Raf-
finot. Composite repetition-aware data structures. In Annual Symposium on
Combinatorial Pattern Matching (CPM 2015), pp. 26-39. Springer International
Publishing, 2015.

(vi) Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza, and Mathieu Raf-
finot. Flexible Indexing of Repetitive Collections. In Computability in Europe
(CiE 2017). Springer International Publishing, 2017 (to appear).

1.2.2 Unpublished Results

The thesis contains also original results that have not been published elsewhere:

• The algorithms to convert between LZ77 and RLBWT formats in compressed work-
ing space (Section 5.2)

• Detailed description, theoretical analysis, and extensive benchmarks of the dynamic
compressed data structures implemented in the DYNAMIC C++ library. This material
is contained in Chapters 6 and 7.

1.3 Outline

The first chapter of the thesis (Chapter 2) starts with a zero-knowledge introduction to
the field of compressed text indexing. The following sections are devoted to definitions
and the introduction of state-of-the-art tools used in the next chapters. In writing this
manuscript, one of the goals was to make it as self-contained as possible. For this reason,
Chapter 2 introduces the notion of compression and describes data structures such as suc-
cinct/compressed bitvectors, wavelet trees, and geometric data structures. These results
are used at the end of the chapter to introduce several compressed text indexes based on
the Burrows-Wheeler Transform and on Lempel-Ziv parsing, and to describe the online
BWT construction algorithm standing at the core of most of the results discussed in this
thesis.

The original contributions of this thesis start with Chapter 3. This chapter and Chap-
ter 4 describe five original algorithms (papers (i)-(iv)) to compute the Burrows-Wheeler
transform and the LZ77 factorization in compressed working space. Both chapters are di-
vided in three main sections: illustration of state of the art, algorithms working in entropy-
compressed working space, and algorithms working in run-length compressed working
space. Algorithms from the first class are suited to compress texts with skewed character



6 1. Introduction

distributions, while algorithms from the second class perform very well on highly repetitive
datasets.

While Chapters 3 and 4 deal with the problem of turning an uncompressed text rep-
resentation into a compressed one, Chapter 5 is devoted to the problem of manipulating
compressed text representations only. This field of research takes the name of compressed
computation (i.e. computation on compressed data without fully decompressing it). In
this chapter we show how to recompress (i.e. changing compression format) compressed
files, and how to use such representations to build compressed full-text indexes. All com-
putations require compressed working space. In detail, we show how to convert between
LZ77 and RLBWT formats (which can be computed with the algorithms of Chapters 3
and 4), and how to build two self-indexes based on these compression techniques. These
indexes can be built in compressed working space by using our compression algorithms
and/or our recompression techniques.

Chapter 6 describes our DYNAMIC C++ library. The library implements several results
discussed in this thesis, including succinct/compressed dynamic strings, searchable partial
sums with inserts, dynamic indexes, and all compression algorithms described in Chapters
3 and 4. We include a theoretical analysis of all data structures implemented in the library.

In Chapter 7 we describe how we compared our findings with state of the art alter-
natives and present experimental results on highly compressible datasets. The chapter is
divided in a first section dedicated to the empirical evaluation of our DYNAMIC library and
in a second section reporting results of the experiments involving compression algorithms
and compressed indexes.

1.4 Notation

Strings

We work with strings S ∈ Σn of length |S| = n on the alphabet Σ = {0, . . . , σ − 1}. The
only restriction we impose on the alphabet size is σ ≤ n (which is always true after a
re-mapping of the symbols). If not specified otherwise, space of the data structures will
be given in bits. Concatenation of strings u, v ∈ Σ∗ will be denoted by uv. By ck we will
denote the string “cc...c” (k times). By Si, i ≤ n, we will denote S[i, ..., n − 1], i.e. the
i-th suffix of S. With the term k-context we will denote a k-mer on Σ, i.e. a string in Σk.

The notation
←−
S indicates the reverse of the string S ∈ Σ∗. An equal-letter run in a string

S is a maximal substring ak, with k > 0 and a ∈ Σ. With the notation rS we will indicate
the number of equal-letter runs in the string S. A substring V of a string S ∈ Σ∗ is
right-maximal if there exist two distinct characters a 6= b, a, b ∈ Σ such that both V a and
V b are substrings of S. S[i] is the i-th character of S. When dealing with dynamic strings,
by S[i]← c we will denote character substitution in position i of the string. The operation
S.insert(c, i) will denote character insertion, turning S into S[0, ..., i− 1]cS[i, ..., |S| − 1].

Logarithms are in base 2 if not otherwise specified.

Burrows-Wheeler Transform

We introduce some notation that will be used when dealing with the Burrows-Wheeler
transform (BWT). See Section 2.2.2 for a formal definition of BWT.



1.4. Notation 7

When dealing with the Burrows-Wheeler transform of a string T , we will assume that
T ends with a character $ lexicographically smaller than all other alphabet characters and
not appearing elsewhere in T . BWT (T ) will denote the Burrows-Wheeler transform of
string T , and, when clear from the context, we will refer to it simply as BWT . With
T -, L- and F -positions we will denote positions on the text T and on the L (last) and F
(first) column of the BWT matrix, respectively. All BWT intervals are inclusive, and we
denote them as [l, r] (left-right positions on the BWT). BWT.F (c), c ∈ Σ, will denote the
starting F -position of the block corresponding to character c in the BWT matrix. Letting
W ∈ Σ∗, the interval of W will be the interval [l, r] of rows prefixed by W in the BWT
matrix (r < l if W does not occur in T ). BWT.LF (i), 0 ≤ i < |BWT | denotes LF function
applied to L-position i. With BWT.LF ([l, r], c), 0 ≤ l, r < |BWT |, c ∈ Σ ∪ {$}, we will
denote function LF applied to BWT intervals: if [l, r] is the interval of a string W ∈ Σ∗

in BWT , then BWT.LF ([l, r], c) returns the interval [l′, r′] of cW in BWT . Using the
notation above introduced, rBWT (T ) denotes the number of runs in the Burrows-Wheeler
transform of T . In this work we will deal with both measures rBWT (T ) and r

BWT (
←−
T )

. In

order to simplify notation, we will use the symbol r to indicate the quantity

r = max{rBWT (T ), rBWT (
←−
T )
}

In real-case texts, rBWT (T ) ≈ r
BWT (

←−
T )

holds, so this simplification has also a practical

justification.
A run-length encoded representation of BWT (T )—to be denoted as RLBWT (T ) or

simply RLBWT—is defined as follows:

Definition 1. Run-length encoded Burrows-Wheeler transform. RLBWT is a
sequence of pairs

RLBWT (T ) = 〈λi, ci〉i=1,...,r

where λi > 0 is the length of the maximal i-th ci-run, ci ∈ Σ. Equivalently, RLBWT (T )
is the shortest list of pairs 〈λi, ci〉i=1,...,r satisfying BWT (T ) = cλ11 cλ22 . . . cλrr

In some cases we will need to distinguish between RLBWT (T ) seen as a plain list of
pairs (see above) and as a RLBWT data structure. In such cases, with RLBWT+(T ) we
will denote a run-length encoded BWT data structure on the text T , taking O(r) words
of space and supporting access to the i-th BWT character, functions LF, FL (mapping
L-positions to F-positions and the other way round), and left-extension of the text in
O(log r) time. In Section 3.3 we describe how to build such a data structure.

Lempel-Ziv Factorization

The LZ77 parsing (or factorization) of a text T is defined as

Definition 2. Lempel-Ziv 77 (LZ77). LZ77(T ) is the sequence of triples

LZ77(T ) = 〈πi, λi, ci〉i=1,...,z

where πi ∈ {0, . . . , n− 1}∪{⊥} and ⊥ stands for “undefined”, λi ∈ {0, . . . , n− 2}, ci ∈ Σ,
and:

1. T = ω1c1 . . . ωzcz, with ωi = ε if λi = 0 and ωi = T [πi, . . . , πi + λi − 1] otherwise.



8 1. Introduction

2. For any i = 1, . . . , z, the string ωi is the longest prefix of ωici . . . ωzcz that occurs at
least twice in ω1c1 . . . ωi

Each T [πi, . . . , πi + λi − 1] is called a LZ77 factor or phrase.

When dealing with the Lempel-Ziv factorization of a text T , we will assume that T
ends with a character # not appearing elsewhere in T . Our algorithms computing LZ77
employ an FM-index over the reversed text. For this reason, in Chapters 4 and 5 we
will assume that the input text begins with $ (BWT terminator) and ends with # (LZ77
terminator).

Space

Depending on the application, we will measure space usage of our data structures in bits
or words. To avoid confusion, we always specify whether space is measured in bits or
words.

The notation o(f(n)) indicates—informally—a function asymptotically smaller than
f(n). More formally:

Definition 3. Small o notation.

f(n) ∈ o(g(n))⇔ lim
n→∞

f(n)/g(n) = 0

Equivalently:
f(n) ∈ o(g(n))⇔ f(n) ∈ O(g(n)) ∧ g(n) /∈ O(f(n))

Example 1.

• n/ log n ∈ o(n)

• n log logn/ log n ∈ o(n)

In practice, adding o(n) (or o(n log σ)) bits of space to our data structures will be
acceptable in some applications. For reasonable n (e.g. around 232), n/ log n is just 3% of
n, while n log log n/ log n is 15% of n.



2
Indexing and Compression: a Tale of

Time and Space

2.1 A Gentle Introduction to Compressed Indexing

A great deal of information in our daily life is stored without respecting any particular
structure or order. Consider, for example, a sheet containing informations about the
residents of a big city. We may imagine, for simplicity, that the sheet stores just the age
of one million people, together with an index enumerating lines:

1 78

2 15

...

500000 35

500001 27

...

999999 89

1000000 31

It is clear that, without any particular ordering of this data, it is very difficult to
answer even simples queries on it. For example, consider the problem of finding out how
many residents are aged 27. The only option we have to solve this problem is to scan the
list and count the number of entries equal to 27. Letting n = 1000000 be the number of
people, this process requires exactly n steps since we cannot exclude any line from our
search.

Indexing Suppose now that our list is ordered by increasing age:

1 1

...

335466 26

335467 27

...

335501 27

335502 28

...

1000000 92



10 2. Indexing and Compression: a Tale of Time and Space

The above problem becomes incredibly easier: we only have to find the first and last
residents aged 27, and subtract their indexes (in the example above: 335501−335467+1 =
35). Since ages are ordered, this task can be solved very efficiently with the same procedure
used to look up words on a dictionary: binary search. In total, we need to perform two
binary searches taking approximately log2(1000000) ≈ 20 steps each, for a total of about
40 steps. This is approximately 25000 times faster than our previous strategy: clearly,
ordering data first is a great idea if we want to solve some problems on it!

Let us now move from numbers to words. Suppose that we wish to find out if a
particular word appears in a text. Consider a big text (say, 1 million words) containing
the following extract (to improve readability, we use underscores instead of spaces):

...ordering_is_good...

Again (as the phrase suggests), ordering the data is the key. We can lexicographically
order words:

...

good

...

is

...

ordering

...

Looking up a word in the above list can be done again with binary search: this reduces
the number of search steps to be performed from n (the number of words) to approximately
log2 n, which results again in a 25000x speedup on a text with n = 1000000 words (actually,
slightly slower since at each step we have to compare several characters to find out if our
word is smaller or larger than the word we are looking in the list).

We are now going to take a little step further, which however will complicate (not by
little) our original problem. What if we wish to check the existence of substrings instead
of words? a substring is any contiguous sequence of characters in the text. For example,
ing is g is a substring of the above text. How can the sorting idea be applied to full
texts? A first naive solution is the following: since we are looking for substrings, just
enumerate and sort all possible text substrings. For example, all possible substrings of the
following (small) text:

sort

are (in lexicographic order): o, or, ort, r, rt, s, so, sor, sort, t. Unfortunately, there
are n(n + 1)/2 substrings in a text of length n. A text of length n = 1000000 contains
about 500 billion substrings: clearly, this solution is not feasible in practice.

A more clever solution follows from the observation that a substring is a prefix of a
text suffix. For example, in the text ...ordering is good... the substring ing is g is
a prefix of the suffix ing is good.... There are just n text suffixes, so it seems feasible to
limit our attention to this limited subset of substrings. The list of lexicographically sorted
text suffixes contains, in particular, the following sub-sequence (possibly interleaved with
other suffixes not shown in this example):



2.1. A Gentle Introduction to Compressed Indexing 11

_good...

_is_good...

d...

dering_is_good...

ering_is_good...

g_is_good...

good...

ing_is_good...

is_good...

ng_is_good...

od...

ood...

ordering_is_good...

rdering_is_good...

ring_is_good...

s_good...

Does the string ing is g appear in the text? with binary search we quickly discover
that this string is indeed a prefix of the line starting with ing is good... (therefore the
answer is positive).

While looking appealing, after a second look it is evident that also this solution is not
feasible: the total number of characters in the n suffixes is (again) n(n + 1)/2. This is
much larger than the original text size (n characters). We are, however, much closer to
a true solution. Letting i be the starting position of the string ordering is good in our
text, we can enumerate positions as follows:

i i+1 i+2 i+3 i+4 i+5 i+6 i+7 i+8 i+9 i+10 i+11 i+12 i+13 i+14 i+15

o r d e r i n g _ i s _ g o o d

The last step comes from the observation that, instead of storing entire text suffixes in
sorted order, we can store their starting positions in the text. In particular, the list of such
numbers —representing starting position of lexicographically sorted suffixes—contains the
following subsequence (possibly interleaved with the starting positions of other suffixes
omitted from this example):

i+11 i+8 i+15 i+2 i+3 i+7 i+12 i+5 i+9 i+6 i+14 i+13 i i+1 i+4 i+10

For example, the starting positions of suffixes good... and is good... are i + 12
and i + 9, respectively. good... is lexicographically smaller than is good...; as a
consequence, i+ 12 comes before i+ 9 in our list.

Note that each text position takes at most dlog2 ne bits to be written, n being the
text length. On ASCII texts smaller than 4 GB, each of these numbers can therefore be
written using 4 Bytes (i.e. characters). As a result, our ordered dataset takes just 4n
characters. This is a huge improvement with respect to the previous solutions! Search of
a text substring works as before, except that we need to jump in the text (at the position
we are looking in the above list) in order to actually read the text suffix. In order to search
for a string of length m, we need to perform about log2 n steps of binary search. In each
of these steps, we need to compare at most m characters to discover whether the current



12 2. Indexing and Compression: a Tale of Time and Space

suffix is smaller or bigger than our query. Overall, this amounts to at most m log2 n steps.
On a text with n = 1000000 characters, searching for a substring of length m = 10 takes
approximately m log2 n ≈ 200 steps. This is 5000 times faster than scanning the whole
text (required in absence of an index).

The list of numbers we just introduced takes the name of suffix array and has been
independently invented by Udi Manber and Gene Myers in 1990 [78] and (under the name
of PAT array) by Gonnet, Baeza-Yates and Snider in 1992 [1, 44]. The suffix array is an
example of what is known in computer science as data structure: an organization of the
data that accelerates some queries on it. In the case the data is a text and the queries
are looking for substrings, the data structure takes the name of full-text index. Several
full-text indexes have been introduced in the literature since the first appearance of such
structures in the seventies. The first full text index ever introduced—the suffix tree [121]—
can be traced back to the year 1973: 20 years before the appearance of the suffix array.
This index is well known to be very fast (supporting the search of a string of length m
in about m steps: faster than the suffix array), but very space consuming. In practice, a
well-engineered implementation of a suffix tree can take up to tens of times more space
than the suffix array.

Note that, in our discussion, we slowly shifted our attention from speed to space. We
discovered that searching for substrings can be done quite time-efficiently, but it is not yet
clear if the same task can be performed in small space. In our context, space is measured
in terms of the number of Bytes (read: characters) needed to store our full text index.
Even though the suffix array appears to be space-efficient, its overall size is 4 times that
of the text. If added to the space needed to store the text, this space becomes 5 ·n Bytes.
It is clear that, if the text is very big (e.g. 10 GigaBytes), it is not always feasible to store
all of this data.

Compression Let us momentarily shift our attention to a seemingly distant concept
that could, however, solve our space problem: text compression. We achieve compression
whenever we are able to exploit regularities in our text (for example, repetitions) to reduce
the space needed to store it. Consider a text containing the following extract:

...compressed_text_is_smaller_than_uncompressed_text...

The substring compressed text is repeated. Letting i be the starting position of
the above extract in our text, we could replace the second occurrence of the repeated
substring with the string [i,15], indicating that we have to copy 15 characters starting
from position i (we can assume that characters ’[’ and ’]’ are reserved, so that we can
distinguish between text characters and integers):

...compressed_text_is_smaller_than_un[i,15]...

Letting n be the text length, the first representation takes n characters, while the
second n − 9. Both strings represent the same text: we achieved compression. The
technique used in this example is very close to the same—LZ77—used in the most efficient
practical text compressors; this compressor is discussed more in detail in Section 2.2.3.
This and other compression techniques are able to considerably reduce the size of typical
texts. For example, texts written in the English language can often be reduced in size by
a factor of 4 using compression (meaning that a text of size 4 GB can be compressed to



2.1. A Gentle Introduction to Compressed Indexing 13

approximately 1 GB). The size of the compressed text can be used as an approximation
of its effective information content: even if our English text takes 4 GB to be stored,
the effective information contained in it amounts to about 1 GB (i.e. the size of the
compressed text). This concept can be understood considering borderline cases: the text
AAA...AAA composed by 1000000 A’s can be compressed very efficiently by simply storing
the instruction

copy 1000000 times A

taking only 20 Bytes. This means that the effective information content of this text is
very low (close to, and possibly lower than, 20 Bytes).

Now, recall that our full-text index based on the suffix array takes 5n Bytes of space.
Since English text can be compressed by a factor of 4, we have that the suffix array takes
20 times more space than the sheer information content of the text. It is clear that this is
an unsatisfactory situation: we would like to be able to quickly search substrings in a text,
but without wasting huge amounts of space. Compression and indexing, however, seem
rather distant concepts. Can we compress an index or—alternatively—index a compressed
text? This intriguing problem remained open until the beginning of the 21st century, when
a series of works [33, 35, 60] showed that, essentially, compression and indexing are two
sides of the same coin.

Compression ⇔ Indexing Let us focus again on the text extract

...compressed_text_is_smaller_than_uncompressed_text...

whose compressed representation is

...compressed_text_is_smaller_than_un[i,15]...

It is not too hard to be convinced of the fact that, in this particular example, also the
suffix array can be compressed. Let i be the starting position in the text of our extract.
The substring compressed text starting from position i+34 and ending at position i+48
is copied from position i, so we can actually omit text positions i + 34, i + 35, ..., i + 48
from the suffix array without losing the ability of finding any text substring. We have two
cases:

(i) The substring we are looking for does not start inside [i + 34, i + 48]. Example:
substring small. Then, its starting position is inside the “compressed” suffix array
and we can find it with the standard search procedure.

(ii) The substring starts from one of the omitted positions. Example: the rightmost
occurrence of ompress. Then, this substring has been copied so it appears also
before the omitted text portion: we will still find ompress since the starting position
of its first occurrence (i.e. i+ 1) is inside the “compressed” suffix array.

Despite being over-simplified, this example illustrates what happens with indexes based
on the Lempel-Ziv compressor [69, 123, 124]. These indexes are discussed more in detail
in Section 2.4.3. Clearly, the general case is much more complicated: substrings of the
text can be copied from substrings that are themselves copied from other text portions.



14 2. Indexing and Compression: a Tale of Time and Space

Moreover, substrings can even copy themselves. However, in this complicated general case
something rather interesting happens: the compressed representation becomes the index.
To find a particular text substring, we just follow copy-links (in our example, [1,15]), i.e.
we “navigate” the structure of the compressed file. Even more remarkably, the compressed
index replaces the text: we can delete the original text file and keep only the index. In
this case, the data structure takes the name of self-index. This phenomenon happens also
with other (rather different) compressed representations. Another important suffix array
compression paradigm, introduced in Section 2.2.2, is the Burrows-Wheeler transform
(BWT) [11]. The BWT is a text permutation obtained by replacing each suffix array
entry j with the (j − 1)-th text character. It can be shown (more details in Section 2.4.1)
that the BWT is an invertible permutation of the text that can be used to emulate the
suffix array. Being a text permutation, the BWT takes just n characters, and can therefore
be considered a compressed suffix array. By employing compression techniques such as
entropy compression or run-length encoding, the BWT can be furthermore compressed to
(often much) less than n characters. We will discuss these techniques in Sections 2.2.1
and 2.4.2.

How do compressed indexes perform in practice? As we show experimentally in this
thesis, on very repetitive texts a compressed index can be thousands of times smaller than
a suffix array. Even on not very repetitive texts, a compressed index takes at least 4 times
less space than the suffix array. compression ⇔ indexing implies that we can accelerate
by thousands of times substring searches while using (often, several times) less space than
the text. The problem of designing and efficiently building fast full-text indexes for all
these compressed representations is the subject of this thesis.

From this point, the description has to become more technical. We need to formally
introduce some compression techniques and describe in detail what the field of compressed
full-text indexing has achieved up to now. After this chapter, we will deal with the original
contributions of this thesis.



2.2. Basic Concepts 15

2.2 Basic Concepts

In this section we introduce the concepts of entropy, text compression techniques (Burrows-
Wheeler transform, Lempel-Ziv parsing), space measures (succinct, compact, compressed),
and we describe the model of computation (word RAM) assumed throughout the thesis.

2.2.1 Entropy

Consider the problem of encoding an alphabet Σ by assigning a binary codeB(c) ∈ {0, 1}>0

to each character c ∈ Σ. The goals are (i) to make the encoding decodable, and (ii)
to minimize the bit-length of the encoded text B(T ) = B(T [0])B(T [1]) . . . B(T [n − 1]).
Requirement (i) can be achieved by using so-called prefix-free codes:

Definition 4. A prefix-free code is an assignment B : Σ→ {0, 1}∗ such that B(x) is never
a prefix of B(y), for every x 6= y ∈ Σ.

A clever way to minimize space occupancy of the encoded text is to assign shorter codes
to more frequent characters. One question we could ask is therefore the following: given
that our text is generated by a zero-order source S fully characterized by character frequen-
cies f : Σ → [0, 1] (i.e. character c is generated with probability f(c) independently from
characters that have already been generated), what is the shortest average bit-length that
such an encoding can achieve? The answer (Shannon’s source coding theorem, 1948 [109])
is the zero-order entropy of the source:

Definition 5. The zero-order entropy H0(S) of a zero-order source S with associated
character distribution f : Σ→ [0, 1] is defined as:

H0(S) = −
∑

c∈Σ

f(c) log f(c)

The above definition applies to the case in which we know the exact distribution of
the character source that generated the input text. In practice however, the input of
our compression algorithm is a text T ∈ Σn without information about the source that
generated it (in the hypothesis that the text was generated by a zero-order source, which
is not necessarily the case). In such case, not all hope is lost: for sufficiently large n, we
can approximate the source distribution by counting absolute character frequencies in T .
This approach leads to a different (and more practical) notion: empirical entropy.

Definition 6. The zero-order empirical entropy H0(T ) of a string T is defined as:

H0(T ) =
∑

c∈Σ

nc
n

log

(
n

nc

)

where nc is the number of occurrences of c in T .

When clear from the context, we will write H0 instead of H0(T ). A prefix-free encoding
of the text cannot use less than nH0 bits of space. H0 reaches its maximum of log σ when
all characters have the same frequency: this is expected, since in this case character
frequencies do not tell us anything useful to compress the text.



16 2. Indexing and Compression: a Tale of Time and Space

Huffman encoding

A practical way to (almost) reach the entropy is Huffman encoding [51]. Huffman algo-
rithm takes as input the alphabet Σ and a frequency f(c) for every c ∈ Σ, and outputs
a function B : Σ → {0, 1}>0 that assigns a prefix encoding to Σ. The algorithm is very
simple:

1. Pick the two characters a, b ∈ Σ with the smallest frequency

2. group them in a metacharacter 〈a, b〉 and set f(〈a, b〉) = f(a) + f(b)

3. remove a and b from Σ, insert 〈a, b〉 in Σ. Repeat from (1) until |Σ| = 1 holds.

The above algorithm creates a binary tree with one character per leaf. This tree encodes
the function B: while descending the tree to reach a leaf c ∈ Σ, assign a 0 to left branches
and a 1 to right branches. For example, 〈a, 〈b, c〉〉 encodes B(a) = 0, B(b) = 10, and
B(c) = 11. By Huffman-encoding T , we use no more than n(H0 + 1) bits of space (note
that this is a conservative upper bound that is actually not reached). This is slightly more
than the nH0 promised by theory because Huffman assigns an integer number of bits to
each character. A consequence of this fact is that we spend at least 1 bit per character
(which is not good if H0 � 1). Other compression schemes such as arithmetic encoding or
binomial/multinomial codes (see Section 2.3.1) are able to break the 1-bit-per-character
barrier.

High-order entropy

How can we improve upon the above compression strategy? One idea could be to look at
contexts (i.e. substrings) that follow each text character in order to choose the encoding
of that character. That is, we could fix a k ≥ 0 and, instead of using only one zero-order
compressed encoding B, use σk encodings Bw1 , ..., Bwσk , where the strings w1, ..., wσk ∈ Σk

are all possible combinations of k characters from Σ. At this point, the encoding of a
character is chosen depending on the k symbols that follow it in the text.

For example, let T = cgcgacgcg and k = 3. The first character is encoded as Bgcg(c),
the second as Bcga(g), the third as Bgac(c), and so on. Note that if k = 0 then we have only
one encoding function Bε: we are back to zero-order entropy compression. Why should
this compress better than H0? Consider the example of a Java textbook and let k = 5.
What letter will most likely precede every occurrence of the string “mport”? clearly, the
answer is ’i’: this means that the function Bmport will assign a very short code to the letter
’i’ (probably just 1 bit), and longer codes to other letters.

More formally:

Definition 7. Let w ∈ Σk, 0 ≤ k < n be a context. With wT we denote the string
consisting of the concatenation of individual symbols preceding w in T .

Example 2. Let T = mississippi

• w = si. Then, wT = ss

• w = i. Then, wT = mssp

• w = is. Then, wT = ms



2.2. Basic Concepts 17

• w = ε (empty string). Then, wT = T = mississippi

Definition 8. The k-th order empirical entropy Hk(T ) of a string T is defined1 as:

Hk(T ) =
1

n

∑

w∈Σk

|wT |H0(wT )

When clear from the context, we will write Hk instead of Hk(T ).

In the above definition, we are putting in the same “bucket” all characters followed by
the same context, and then compressing each bucket with a zero-order compressor (e.g.
Huffman).

In practice, if it is easy to predict the following text character given some preceding
characters, then Hk compresses much better than H0, for k big enough (see Table 2.1). It
should be clear that the parameter k represents a trade-off: big k improves compression,
but we also need somehow to take into account the overhead of storing the (up to σk)
encoding functions. To understand this note, consider the limit case k = n. In this case,
there is only one character per context, therefore Hk = 0. Obviously, this does not mean
that the string can be compressed to nHk = 0 bits: there is a hidden space complexity in
the encoding functions that we necessarily need to store in order to retrieve the original
string. When presenting a result involving high-order compression, the value of k should
be explicitly stated. In some cases, the claimed space bounds hold for every value of
k: this follows from the fact that the additional space overhead of the data structures
increases (often exponentially) with k. In other cases, k is fixed (usually, k ∈ o(logσ n)).

There is a nice way of visualizing this idea of partitioning text characters by context.
We could sort all the circular permutations of T in a matrix M ∈ Σn×n. At this point,
characters in the last column of M will be partitioned by length-k contexts, for any k.
For reasons described in the next section, we assume that T ends with a special character
$ not appearing elsewhere in T and lexicographically smaller than all other alphabet’s
characters. Figure 2.1 represents this matrix for the text T = mississippi$. For example,
let k = 2. The fourth and fifth rows of the matrix correspond to context “is”: the two
characters ’s’ and ’m’ in the last column at these rows are both followed by this context
inside T and are thus adjacent in the last column of the matrix.

Note that the last column of the matrix is a permutation of T . We could factorize
this permutation according to length-k contexts: in the above example, with k = 2 this
factorization would be “i/p/s/sm/$/p/i/ss/ii”. At this point, we could apply Huffman
encoding to each factor. As a result, we compress T to n(Hk + 1) bits.

2.2.2 Burrows-Wheeler Transform

The text permutation introduced at the end of the previous section is known as the
Burrows-Wheeler Transform (BWT) of the text [11]. We have already seen that the
BWT acts as a compression booster, turning any zero-order compressor (e.g. Huffman)
into a high-order compressor2. However, this boost would be useless if we were not able to

1Actually, the original definition uses context that precede a character. However, it can be shown that
the two measures differ only by low-order terms, so we will use this one as it simplifies the analysis of the
structures that will be presented.

2This, however, is not necessarily the partitioning of the text guaranteeing the best compression. See [31]
for efficient algorithms computing such a partitioning.



18 2. Indexing and Compression: a Tale of Time and Space

Collection H0 H1 H2

CODE SOURCES 5.537 (69.21%) 4.038 (50.48%) 3.012 (37.65%)
MIDI 5.633 (70.41%) 4.734 (59.18%) 4.139 (51.74%)

PROTEINS 4.195 (52.44%) 4.173 (52.16%) 4.146 (51.82%)
DNA 1.982 (24.78%) 1.935 (24.19%) 1.925 (24.06%)

ENGLISH 4.529 (56.61%) 3.606 (45.08%) 2.922 (36.53%)
XML 5.230 (65.37%) 3.294 (41.17%) 2.007 (25.09%)

Collection H3 H4 H5

CODE SOURCES 2.214 (27.68%) 1.714 (21.43%) 1.372 (17.15%)
MIDI 3.457 (43.21%) 2.334 (29.18%) 1.259 (15.74%)

PROTEINS 4.034 (50.43%) 3.728 (46.61%) 2.705 (33.81%)
DNA 1.920 (24.00%) 1.913 (23.91%) 1.903 (23.79%)

ENGLISH 2.386 (29.83%) 2.013 (25.16%) 1.764 (22.05%)
XML 1.322 (16.53%) 0.956 (11.95%) 0.735 (9.19%)

Table 2.1: Values of H0, . . . H5 for six texts: code sources (Java, C++), MIDI files, a protein
database, DNA files, English texts, and XML files. The values represented in the table are bits per
character and—between parentheses—compression rate with respect to ASCII encoding (7 bits
per character). Note that DNA is almost a random text (on Σ = {A,C,G, T}), and we always
need log σ ≈ 2 bits per character to represent it. On the other hand, this particular XML file is
extremely repetitive: H5 leads to a 10x compression rate. This is about 7 times better than using
just H0. Data coming from [37].

$mississippi

i$mississipp

ippi$mississ

issippi$miss

ississippi$m

mississippi$

pi$mississip

ppi$mississi

sippi$missis

sissippi$mis

ssippi$missi

ssissippi$mi

1

Figure 2.1: Sorted circular permutations of T . In the last column, T characters are grouped by
context.

invert BWT (T ) (i.e. obtaining the original T ). As it turns out, BWT (T ) can be inverted
without the need of storing additional information other than BWT (T ). At the core of
this and many other important properties of the BWT, stands the LF mapping property.
It is very convenient to reason about the BWT using its matrix form introduced in the
previous section. We call the first and last columns of this matrix F and L, respectively. L



2.2. Basic Concepts 19

corresponds to BWT (T ). Most importantly, note that we do not need to store in memory
the whole matrix: column L is sufficient to reconstruct (locally) the matrix and is all we
will ever need to store during the execution of our algorithms.

The LF property, depicted in figure 2.2 (only on character ‘i’), links characters between
the L and F columns and can be stated as follows:

Theorem 1. LF mapping. The i-th occurrence of c ∈ Σ on column L (enumerating
top-down the positions) corresponds to the i-th occurrence of c on column F (i.e. they
represent the same position on the text).

F Unknown L

$ mississipp i

i $mississip p

i ppi$missis s

i ssippi$mis s

i ssissippi$ m

m ississippi $
p i$mississi p

p pi$mississ i

s ippi$missi s

s issippi$mi s

s sippi$miss i

s sissippi$m i

Figure 2.2: Red arrows: LF mapping (only on character ‘i’). Black arrows: backward navigation
of T . The central part of the matrix is not stored in practice, so here we declare it as “Unknown”.

It is not hard to prove the above property. The key idea is to think about the ordering
of equal characters on the two columns. In column F, equal characters (for example, the
i’s) are ordered according to the lexicographic order of the text suffixes that follow them
(by definition of BWT). It is easy to see that the same property holds for equal characters
on the L column, therefore occurrences of any c ∈ Σ appear in the same order in the F
and L columns.

A first important consequence of this property is that the BWT can be inverted. As
displayed in Figure 2.2, by following a LF link and then going back to the L column at
the same row (i.e. black arrows in Figure 2.2) we navigate T backwards by 1 position.
Then, we can just start from character $ (which we know to appear at the end of T ) and
reconstruct T backwards one character at a time by following LF links. As we will see in
Section 2.4.1, LF links can be computed very quickly by adding some light structures on
top of the BWT.

Much harder is the task of efficiently building the BWT. These are the best bounds
known to date:

Theorem 2. BWT (T ) can be built in O(n log n/ log log n) time and high-order compressed
working space [87]



20 2. Indexing and Compression: a Tale of Time and Space

Theorem 3. BWT (T ) can be built in O(n) time and O(n log σ) working space [4, 6, 82]

To conclude this section, note that text substrings are (by definition) sorted in the F
column of the BWT matrix. This suggests that the matrix could be used as a text index
by binary-searching a pattern on it. As we will see (section 4), the LF property actually
enables for an even more efficient and elegant search algorithm on the BWT: backward
search.

2.2.3 Lempel-Ziv Parsing

Let us now introduce another compression paradigm: the Lempel-Ziv factorization (or
parsing). The idea behind this family of compression techniques is to break (factorize)
the text into phrases in such a way that each phrase appears before in the text. At this
point, compression can be achieved by representing each phrase with a pointer to the text
(O(log n) bits). Also in this case, we append a terminator symbol # at the end of the text
(for reasons explained below).

Definition 9. LZ78 factorization [124]. The LZ78 factorization S1S2...Sz = T# of T#
is defined as:

• Si = a ∈ Σ ∪ {#} if this is the first occurrence of a

• Si = Sja otherwise, where j < i, a ∈ Σ ∪ {#}. Si is the longest phrase with this
property

Example 3.

• T = ACGCGACACACACGGTGGGT

• lz78(T#) = A|C|G|CG|AC|ACA|CA|CGG|T |GG|GT |#

Example 4.

• T = AAAAAAAAAAAAAAAAAAAA

• lz78(T#) = A|AA|AAA|AAAA|AAAAA|AAAAA#

Note that we need to append a character # /∈ Σ at the end of the text because,
otherwise, the last phrase could be not well-defined (as in example 2: without # the last
phrase would be equal to its source).

If we represent the factors as z pairs 〈text position, char〉 (putting a NULL text position
if the phrase is the first occurrence of a character) we achieve compression. To distinguish
between the actual factorization of the text into substrings and its representation as a list
of pairs, we use the notation lz78(T) for the former and LZ78(T) for the latter.

Example 5.

• T = ACGCGACACACACGGTGGGT

• lz78(T#) = A|C|G|CG|AC|ACA|CA|CGG|T |GG|GT |#

• LZ78(T#) = 〈−, A〉〈−, C〉〈−, G〉〈1, G〉〈0, C〉〈5, A〉〈1, A〉〈3, G〉〈−, T 〉〈2, G〉〈2, T 〉〈−,#〉



2.2. Basic Concepts 21

The following properties hold for the number z of phrases of the LZ78 factorization
(refer to the next section for a definition of the small-o notation used here):

1. z log n ≤ nHk + o(n log σ) for k = o(logσ n)

2. z ∈ Ω(
√
n)

Property 2 is easy to prove: in the best case each phrase adds 1 character to the longest
previous phrase. For a proof of property 1, see [63].

A much more powerful variant of this technique is LZ77: a factor can be copied from
anywhere in the text that precedes it (not just from the beginning of a previous phrase),
and can end at any position (not just at the end of the copied phrase). In this case, we can
encode each factor with a triple 〈text position, length, char〉, where length is the number
of copied characters. LZ77 was formally defined in Definition 2.

Example 6.

• T = ACGCGACACACACGGTGGGT

• lz77(T#) = A|C|G|CGA|CA|CACACG|GT |GGG|T#

• LZ77(T#) = 〈−, 0, A〉〈−, 0, C〉〈−, 0, G〉〈1, 2, A〉〈1, 1, A〉〈6, 5, G〉〈2, 1, T 〉〈13, 2, G〉〈15, 1,#〉

Example 7.

• T = AAAAAAAAAAAAAAAAAAAA

• lz77(T#) = A|AAAAAAAAAAAAAAAAAAA#

• LZ77(T#) = 〈−, 0, A〉〈0, 19,#〉

Note that we can have self-references: a phrase can copy characters from itself (see,
e.g. phrase 2 in Example 6). The following properties hold for LZ77:

1. As for LZ78, z log n ≤ nHk + o(n log σ) [63]

2. However, with LZ77 is possible that z ∈ Θ(1)

Property 2 is evident in Example 6 (compare it with Example 3). Since we encode each
factor with O(log n) bits, Property 2 implies that LZ77-based compressors can compress
the text exponentially. This is a result we cannot achieve with BWT+entropy compres-
sion3.

An important quantity linked to LZ77 is the parse height. We start by defining the
character height. The character height hi, 0 ≤ i < n, is the number of times we have to
follow copy-links starting from text position i until we reach a trailing character of some
LZ77 phrase. More formally:

3Although combining the BWT with run-length encoding we can achieve exponential compression.
More on this later.



22 2. Indexing and Compression: a Tale of Time and Space

Definition 10. Character height. Let 0 ≤ i < n be a text position. Let moreover
len(j) =

∑j
k=1(λk + 1) be the cumulative length of the first j phrases (including trailing

characters). If T [i] is the trailing character cj of some LZ77 phrase 〈πj , λj , cj〉, then hi = 0.
Otherwise, let 〈πj , λj , cj〉 be the phrase containing position i, i.e. such that len(j − 1) ≤ i
and len(j) > i. Let i′ be the position such that T [i] is copied from T [i′], i.e.

i′ = πj + (i− len(j − 1))

Then, hi is defined recursively as hi = hi′ + 1.

Definition 11. Parse height. The parse height h is defined as the maximum character
height:

h = max
0≤i<n

hi

h often appears in the complexity analysis of data structures based on LZ77 as it
represents the worst-case complexity of extracting a character from LZ77(T ) by following
copy-links. Note that, in the worst case, h can be as large as Θ(n) (e.g. consider extracting
T [n− 2] from LZ77(cn−1#) = 〈⊥, 0, c〉 〈0, n− 2,#〉).

2.2.4 Full-Text Indexing

This thesis deals with full-text indexes, i.e. data structures supporting fast substring search
queries on a text. In particular, we will tackle the problem of designing and building
compressed full-text indexes using a limited amount of resources (in terms of time and
space). The indexes we will describe use the compression techniques introduced in this
section in order to—at the same time—index and compress the text. We start by giving
a formal definition of full-text index:

Definition 12. Full-text index. A full-text index on a text T ∈ Σn is a data structure
I(T ) that permits to answer efficiently to the following queries:

1. Locate(P), where P ∈ Σm. Return the set OCC = {i | T [i, . . . , i + |P | − 1] = P},
i.e. return all occurrences of P in T

2. Count(P). Return the number occ = |OCC| of occurrences of P in T

3. Extract(i,m). Return T [i, ..., i+m− 1]

In the above definition, the term “efficiently” means much faster than O(n) time
(otherwise a scan of the text is sufficient in order to answer count and locate queries).
More precisely, we are looking for indexes at most O(logO(1) n) times slower than the
optimal solution (suffix trees are optimal in this respect: read below). Note that extract
queries are trivial if the text is stored in plain format. We will call an index that supports
extract without the need of the text a self-index. In this case, the text can be deleted
and we can keep just the index: a self-index is an augmented representation of a text that
also supports search functionalities on it, while at the same time occupying (almost) the
same space of the compressed text. As a comparison for future references, here we remind
the space/time bounds of suffix trees:

• Space: O(n log n) bits



2.2. Basic Concepts 23

• Count: O(m) time

• Locate: O(m+ occ) time

• Extract: O(m) time (text is available)

Note that suffix trees support all queries in optimal time4. As noted in the Intro-
duction, however, O(n log n) bits of space are often too much in practice. In Section 2.4
and in the following chapters we show that compressed full-text indexes entirely solve
this problem by integrating compression and indexing in the same data structure. The
main idea behind compressed full-text indexes is to augment compressed representations
of a text with some light data structures supporting search queries. Such data structures
are described in detail in Section 2.3: we will start with succinct and compressed bitvec-
tors with support for rank, select, and access (RSA) queries and use them to obtain
compressed strings with support for RSA queries and geometric range data structures.

We describe and use in our results two classes of compressed full-text indexes: FM-
indexes and LZ-indexes. Indexes belonging to the former class consist of a compressed
Burrows-Wheeler transform with support for rank and access queries. These indexes
support fast count and locate queries, but cannot achieve exponential compression. FM-
indexes can employ any technique to compress the Burrows-Wheeler transform; we de-
scribe static and dynamic indexes based on entropy compression (Sections 2.4.1, 3.2, 4.2)
and on run-length encoding (Sections 2.4.1, 3.3, 5.3.3).

As the name suggests, the latter class of indexes is based on the Lempel-Ziv parsing
(either LZ77 or LZ78). Such indexes exploit the fact that LZ phrases are copied from
previous text positions: intuitively, if a pattern P occurs inside a LZ phrase, then it
occurs also in its source. Indexes based on LZ77 can achieve exponential compression. We
describe LZ-indexes in Section 2.4.3.

2.2.5 Measuring Space

In this thesis we deal with space-efficient data structures on strings. This means that we
need to be able to measure very accurately the space of these structures. Unfortunately,
the big-O notation is not good for this purpose as it hides constants from the analysis:
there is a huge difference, for example, between an index taking 2n log σ bits of space
and one taking 17n log σ bits of space. Using big-O, the space of both these structures is
O(n log σ) bits. There is a name for this space occupancy:

Definition 13. Compact space. A compact data structure on a string T ∈ Σn has size
(in bits)

O(n log σ)

For more precise measures of space we need to use the small-o notation (see Section
1.4 for a formal definition of small-o notation):

Definition 14. Succinct space. A succinct data structure on a string T ∈ Σn has size
(in bits)

n log σ + o(n log σ)

4For simplicity, we do not consider packed texts, i.e. texts where blocks of w/ log2 σ characters are
packed in a single memory word. In this case, the lower bounds for count, locate, and extract would be
of O(m log σ/w), O(m log σ/w + occ), and O(m log σ/w), respectively.



24 2. Indexing and Compression: a Tale of Time and Space

or, equivalently, n log σ(1 + o(1)) bits

Note that the information-theoretic minimum number of bits required to store a generic
sequence of length n from Σ is log2(|Σn|) = n log σ, so the above space occupancy is—in
general—optimal up to low-order terms. If we move our attention from generic strings to
a specific string S ∈ Σn however, we can exploit regularities in S in order to represent it
in less than n log σ bits. In this case, we refer to the structure as being compressed. Note
that, when dealing with compressed data structures, the particular adopted compression
measure (e.g. entropy, number of LZ77 phrases, or number of BWT runs) should also be
clearly stated (as they behave differently on different types of data).

2.2.6 Model of Computation

To conclude the section, a few notes on the model of computation used: the Word Random
Access Machine (word RAM) model. The model comes with a parameter, w, indicating
the bit-size of a memory word. Data is organized into main memory in blocks of w bits,
and we can randomly access in constant time any of such blocks. The model permits
moreover to perform in constant time a certain set of operations between memory words
W ∈ {0, 1}w:

• Multiplication. W1 ∗W2

• Division. W1/W2

• Addition/subtraction. W1 ±W2

• Bitwise masks (bitwise AND, OR, negation)

• Population count. popcount(W ) = number of bits set in W

We will also make use of bit shift operations W >> i and W << i (bits exiting from
the word are lost). Such operations are particular cases of division and multiplication,
respectively.

We will assume that the model is trans-dichotomous, i.e. that we can store a pointer
to the text or a counter in a constant number of words. Letting n be the size of our
text instance, this translates to the formal requirement n ≤ 2O(w). Note that this is an
assumption often made but not always explicitly stated (e.g. in sorting algorithms, we
assume we can represent the number n of integers, as well as any manipulated integer, in
a constant number of memory words).

Despite including constant-time popcount in the model might sound permissive, we
will make use of this operation only inside succinct static/dynamic bitvectors (see Sections
2.3.1, 6.3.2, and 3.2.1). In such cases, the assumption of a constant-time hardware imple-
mentation for popcount can be dropped by limiting the word size to w = log n (n being
the bitvector length) and storing popcount values in an auxiliary precomputed table of size
O(2w/c) words, for any constant c. This additional space is o(n) for any choice of c > 1,
so it will not impact on the leading terms in the space complexities of our structures.



2.3. Building Blocks 25

2.3 Building Blocks

We can now start introducing some basic succinct and compressed data structures. We
start with bitvectors. See [85] for another excellent and comprehensive survey on the topic.

2.3.1 Bitvectors

Bitvectors are, arguably, the most important data structures we are going to use in our
indexes. Despite their simple definition, bitvectors are fundamental building blocks in
structures representing strings, sets, geometry and graphs (to name a few). In this section
we will introduce three different versions—differing in their space usage—of bitvectors:
succinct, entropy-compressed, and gap-compressed. Let us start with the definition of
bitvector data structure:

Definition 15. Bitvector. A bitvector B over a length-n bit-sequence b0b1...bn−1 ∈
{0, 1}n is a data structure supporting efficiently the following operations (RSA queries):

• Rank.

– B.rank1(i) =
∑i−1

j=0B[j]

– B.rank0(i) = i−B.rank1(i)

• Select.

– B.select1(i) = max{j | B.rank1(j) = i}
– B.select0(i) = max{j | B.rank0(j) = i}

• Access. B[i] = bi

In the following, we will make no distinction between a bitvector data structure and its
underlying bit-sequence, and we will use the term bitvector for both of them. Informally,
rankb(i) is the number of bits equal to b before position i excluded. selectb(i), on the other
hand, is the position j of the i-th bit equal to b (enumerating bits from 0). We will use the
abbreviation RSA to indicate rank-select-access queries. The particular case where only
rank, select1, and access queries are supported takes the name of indexable dictionary.
Since we will need (see Section 2.3.2) to support RSA queries on general alphabets by using
bitvectors as building blocks, in this section we will focus on the more general bitvector
data structure—also called fully indexable dictionary—supporting also select0.

What does efficiently mean in the above definition? by storing B in plain format
(i.e. with just a sequence of n bits) we can answer access in constant time. This is
clearly efficient. It is easy to answer also rank and select in constant time: rank re-
quires just n counters storing all rank1 values, while to implement selectb we could store
B.rankb(n) pointers to B. This solution is however not space-efficient, as the counters
require O(n log n) bits to be stored.

A second solution is to store just one rankb counter every 2 log n positions of B (i.e.
n/ log n counters overall). In this way, rankb can be implemented in O(log n) time by
reading one counter and accessing at most O(log n) bits. Selectb could be implemented
with a binary search on the rankb values, plus O(log n) accesses (O(log n) total time).
This structure takes only 2n bits of space and is time-efficient. However it is not optimal,



26 2. Indexing and Compression: a Tale of Time and Space

neither in time (the optimal time is constant for all operations) nor in space (the optimal
is n bits).

It turns out that we can still answer all queries in constant time with a data structure
taking only n+ o(n) bits of space (succinct). This result is due to the pioneering works of
Jacobson [52] (rank) and Clark [14] (select) on succinct data structures.

Constant-time rank in succinct space Here we consider only rank1. The solutions
for rank0 are symmetric. We divide the bitvector in blocks of log n bits and superblocks
of log2 n bits. Then:

• For each superblock, we store explicitly the rank up to that position. This requires
log n · n/ log2 n = n/ log n = o(n) bits of space

• For each block, we store the partial rank from the beginning of the corresponding su-
perblock. Note: a superblock contains at most log2 n bits set, so a local rank counter
requires only log log2 n = O(log log n) bits. Total space: O(log log n·n/ log n) = o(n)
bits

• We moreover store the plain bit sequence b0b1 . . . bn−1 packing blocks of w bits in
memory words. That is, b0b1 . . . bn−1 is stored in memory as the sequence of memory
words5 W0W1 . . .Wn/w−1, where Wi = bi∗wbi∗w+1 . . . bi∗w+w−1

At this point, it is easy to answer B.rank1(i) in constant time: first, sum the values of
the counters of the superblock and of the block containing position i. We are left with the
problem of counting how many bits set appear before position i inside the block containing
this position. A linear scan would take O(log n) time; however, remember that we packed
bits in memory words, and a memory word has size w ≥ log n. It is therefore easy to see
how to retrieve this value in constant time with a constant number of popcount and mask

queries on at most two memory words in W0W1 . . .Wn/w−1 (i.e. the single word or the
two words that intersect the block).

Example 8.

• bit sequence: 11001011010010100101010010101110

• n = 32

• block size: log n = 5

• superblock size: log2 n = 25

For simplicity, assume that w = log n = 5 (blocks therefore correspond to memory
words). We pack the bitvector in 7 memory words (in the last one we add a padding of 3
bits, not shown here):

bitvector 11001 01101 00101 00101 01001 01011 10

superblocks 0 12

blocks 0 3 6 8 10 0 3

5For simplicity, let us assume that w divides n



2.3. Building Blocks 27

Constant-time select in succinct space Here we consider only select1. The solu-
tions for select0 are symmetric. Let t1 = log2 n. We divide the bitvector in r superblocks
B0, ..., Br−1 containing exactly t1 1’s each. Note that these blocks are not all of the same
size: they can contain any number of bits greater than t1 (and smaller than n, of course).
Let k = bj/t1c. Then:

B.select1(j) =

k−1∑

h=0

|Bh|+Bk.select1(j − k · t1)

Note that (each possible value of) the summation can be explicitly stored using r counters.
This takes space O((n/t1) log n) = O(n/ log n) = o(n) bits (maximum number of bits set
is n) and reading the value of interest takes constant time. Let us see how to answer the
local select query Bk.select1(j − k · t1). Depending on the size of Bk:

• If |Bk| ≥ log4 n, then store explicitly all the t1 select results. Overall space of these

structures: at most O
(

n
log4 n

t1 log n
)

= O(n/ log n) = o(n) bits.

• Otherwise, divide the superblock in blocks containing t2 =
√

log n bits set each.
Repeat the main strategy: store explicitly the sums (one counter of log(

√
log n) ∈

O(log log n) bits per block) and local select.

– Explicit sums: overall, at most O( nt2 log logn) = O(n log log n/
√

log n) = o(n)
bits

– Local select (1): if size of the block is ≥ logn
2 , then store explicitly the t2

select results. At most 2n/ log n such blocks, so in total O( n
logn t2 log logn) =

O(n log log n/
√

log n) = o(n) bits.

– Local select (2): for blocks of size< logn
2 , we use a universal table storing all pos-

sible t2 results of a select query on all possible combinations of blocks of length
logn

2 bits. The table takes O(2logn/2 ·t2 ·log logn) = O(
√
n log n log log n) = o(n)

bits

Clearly, with the packed representation of the bit sequence described in Subsection
2.3.1, we can answer access in constant time (access a word and perform a shift and a
mask). We obtain the following result:

Theorem 4. The bitvector data structure above described takes n+ o(n) bits of space and
answers access, rank, and select queries in constant time.

Achieving compression: the RRR bitvector

It is not too difficult to improve the space of the bitvector to nH0 + o(n) bits (where
0 < H0 ≤ 1) without affecting query times. The idea, described Raman, Raman, and
Rao [105]6, is to divide the bit-sequence b0b1 . . . bn−1 in blocks of u = log n/2 bits and
compress each block using the binomial code: there are

(
u
C

)
possible bitvectors of length

u with C bits set; the binomial code encodes the length-u block B with the pair 〈C,O〉
6Here we outline their structure presented at section 4.1: Fully Indexable Dictionaries for Dense Sets.

The solution for indexable dictionaries is more space-efficient as it uses the information-theoretic minimum
number of bits (modulo low-order terms).



28 2. Indexing and Compression: a Tale of Time and Space

(class-offset), where O (offset) is the position of B in the ordering of all possible length-u
bitvectors with C bits set.

Example 9. Let u = 5. Consider the block B = 01000. We have C = 1. The number of
length-u bitvectors with C = 1 bits set is

(
5
1

)
= 5: 00001, 00010, 00100, 01000, 10000. B

is the 4th in the list, so we will encode it as 〈1, 4〉

The number C requires only log u bits to be written. The number O has a variable
length of log

(
u
C

)
bits that depends on C: from 1 bit (when C = 0) to O(u) bits (when

C = u/2). It follows that blocks with few 1’s or 0’s are considerably (exponentially)
compressed from u to log u bits. Again, we divide the bitvector in blocks of size u2 bits.
We can store the pairs 〈C,O〉 sharing a superblock consecutively in a bit-array, and store
explicitly their start positions (O(log u) bits each) inside this array to guarantee constant-
time access (this requires o(n) additional bits). It can be shown that with this encoding
each block is compressed to its zero-order entropy, and with few more calculations we
derive that the whole bit sequence is compressed to nH0 + o(n) bits. On top of this, we
build the additional structures described in the previous section (o(n) bits). We can use
a universal table of O(2u · u) = o(n) bits7 to decompress in constant time the blocks of
interest while computing rank, access, and select.

Static gap-encoded bitvectors

Suppose that the input bitvector is very sparse, i.e. the number m of bits set is very
small with respect to the bitvector size n. In this case, the o(n) spatial term that comes
with the solution described in the previous section could be asymptotically bigger than
m, therefore we need yet another compression scheme capable to exploit the sparsity of
the bitvector.

The RRR indexable dictionary described by Raman, Raman, and Rao [105] achieves
this goal, but does not support select0 and rank0. Here we describe a very simple and
self-contained solution to the fully indexable dictionary problem taking m log n + O(m)
bits of space and answering RSA queries in O(log n) time. The advantage of this solution
is that it is easy to dynamize (we will discuss dynamization in the next chapters). More
space-efficient and faster solutions include Gupta et al. fully indexable dictionary [48] and
Elias-Fano encoding of increasing sequences [26, 28, 92]. Let 0 ≤ i1 < · · · < im < n be
the positions of the bits set in bitvector B[0, . . . , n]. The sequence 〈i1, · · · , im〉 (taking
m log n bits of space) is sufficient to answer rank and access queries in O(logm) time
with a binary search on it, and select1 queries in constant time with just one access. To
support select0, we can simply group the integers in blocks of size O(log n) and build a
binary tree having these blocks as leaves. We moreover store in each internal tree node
x the number of 0’s of the corresponding bitvector subsequnce induced by the integers

stored in the subtree rooted in x. The tree takes O
(

m
logn log n

)
∈ O(m) bits of space. It

is easy to see that we can answer select0 queries in O(log n) time by navigating the tree
from its root to one of the leaves and then reading at most O(log n) integers in the target
leaf.

7The table is a matrix H[C][O] indexed by class and offset values and whose elements are length-u
bitvectors



2.3. Building Blocks 29

2.3.2 Wavelet Trees

Our aim is now to generalize the result obtained in the previous section to strings on
general alphabets. That is, we want to be able to efficiently answer RSA queries on a
general string S = c0c1 . . . cn−1 ∈ Σn. Letting c ∈ Σ, we want to support:

• S.rankc(i) = |{j | cj = c ∧ j < i}|

• S.selectc(i) = max{j | S.rankc(j) = i}

• S[i] = ci

Informally, S.rankc(i) is the number of characters equal to c ∈ Σ before position i
excluded, while S.selectc(i) is the position of the i-th character equal to c.

Wavelet trees, first used in this context by Grossi et al. [47], are an extremely elegant
data structure that permits to reduce RSA queries (as well as updates; more on this later)
on general strings to RSA queries on bitvectors. See [30, 84] for two excellent surveys on
the topic. In a wavelet tree, the string is represented as a binary tree with σ leaves. Each
internal node of the tree is labeled with a bitvector data structure. Fix a prefix encoding
c : Σ → {0, 1}∗ of the alphabet, and let c(a)[i] be the i-th leftmost bit of c(a), a ∈ Σ.
WT (S), S ∈ Σn, is a binary tree defined recursively as follows:

Definition 16. Wavelet tree. The wavelet tree is a binary tree whose internal nodes are
bitvectors and whose leaves are alphabet characters. The root of the tree is the bitvector
c(S[0])[0] . . . c(S[n−1])[0] formed by taking the first bit of each character in S. Then, build
a sequence S0 (resp. S1) by taking (in S-order, left to right) all characters in S whose
binary code starts with 0 (resp. 1) and by removing the leftmost bit from their codes. The
left and right children of the root are, respectively, WT (S0) and WT (S1). The base case
is reached when we are given as input a binary string S ∈ {0, 1}>0. In this case we build a
node labeled with the bitvector S. The node has two leaves labeled with the two characters
of the original alphabet Σ whose binary codes correspond to the path from the root to these
leaves.

The following example should be self-explanatory:

Example 10. S = mississippi. Binary encoding of the alphabet: c(m) = 00, c(i) = 01,
c(s) = 10, c(p) = 11. Figure 2.3 depicts WT (S).

Some important notes:

1. We do not store characters inside internal nodes (we store only bits). In Example
10, characters are shown also inside tree nodes only for explanatory purposes

2. In general, we need however to store characters in the leaves (to encode function c).
However, for some encoding this can be avoided, e.g. when c is the natural binary
encoding c(0) = 00, c(1) = 01, c(2) = 10, c(3) = 11 (we will use this encoding later
with geometric data structures)

3. if we store the tree as O(σ) separate bitvectors, we have a O(σ log n) extra term in
the space usage (O(σ) pointers to nodes). It is actually possible to concatenate all
bitvectors in a single bitvector while still being able to solve all queries in the same



30 2. Indexing and Compression: a Tale of Time and Space

m 0
i 0
s 1
s 1
i 0
s 1
s 1
i 0
p 1
p 1
i 0

s 0
s 0
s 0
s 0
p 1
p 1

p1

s01

m 0
i 1
i 1
i 1
i 1

i1

m0

0

Figure 2.3: Wavelet tree of the string mississippi. Note that the i-th level stores the i-th bits in
the binary representations of the characters. There are σ leaves, each labeled with an alphabet
character.

time bounds. With this solution, the extra O(σ log n) term vanishes. The tree of
Example 10 is stored level-wise as the single bitvector (the delimiter | is used here
only for clarity):

00110110110|01111|000011

Access To answer S.access(i) using WT (S), start from the bitvector BR at the root R
of the wavelet tree. By accessing BR[i] we get the first bit of the binary representation of
S[i]. Note that the bitvector B0 at node R.child(0) stores the second bits of the binary
representation of characters in S that start with bit 0 (similarly for bitvector B1 at node
R.child(1)). Let x = BR[i]. It follows that the second bit of the binary representation of
S[i] is Bx[BR.rankx(i)]. By recursively repeating this strategy, we finally reach the leaf
of WT (S) labeled with character S[i]. Since we descend the tree from the root to a leaf
and spend only constant time at each level (one access and one rank), running time is
O(|c(S[i])|) (number of bits of the binary representation of S[i]).

The procedure is reported as Algorithm 1. We use the following notation: root is
the root node of the WT, N.bitvector is the bitvector associated with the node N , and
N.child(b), with b ∈ {0, 1} is the node child of N reached following the edge labeled with
bit b.



2.3. Building Blocks 31

Algorithm 1: access(i)

1 N ← root;
2 while N is not leaf do
3 B ← N.bitvector;
4 b← B[i];
5 N ← N.child(b);
6 i← B.rankb(i);

7 return N.label;

Rank Rank does not differ much from access. Let us start from bitvector BR at the
root R of the tree. In order to answer S.rankx(i) using WT (S), first count how many
characters in S start with bit b = c(x)[0] before position i: i′ = BR.rankx(i). Then,
move at position i′ of the bitvector Bb associated with node R.child(b) and repeat with
the second bit of c(x). By recursively repeating this strategy for all bits of c(x), we
reach the leaf of WT (S) labeled with x. The last rank operation performed at the parent
of this leaf yields exactly the value S.rankx(i). Running time of this procedure is O(|c(x)|).

Algorithm 2: rankx(i)

1 N ← root;
2 k ← 0;
3 while N is not leaf do
4 B ← N.bitvector;
5 b← c(x)[k];
6 i← B.rankb(i);
7 N ← N.child(b);
8 k ← k + 1;

9 return i;

Select To answer S.selectx(i) using WT (S), start from the parent N of the leaf of
WT (S) labeled with x. Let BN be the bitvector associated with node N . Let b =
c(x)[|c(x)| − 1] be the last bit of c(x). By computing i′ = BN .selectb(i) we retrieve the
position i′ of the i-th character equal to x in bitvector BN . Now, jump to the parent
N ′ of N and repeat the strategy substituting i with i′ and performing select with bit
b′ = c(x)[|x| − 2]. The procedure terminates at the root R of WT (S). The select opera-
tion performed on BR yields exactly the value S.selectx(i). Again, running time of this
procedure is O(|c(x)|).

The procedure is reported as Algorithm 3. We use the following additional notation:
leaf(x), x ∈ Σ, is the leaf of the WT labeled with character x. N.parent() is the parent
node of N .



32 2. Indexing and Compression: a Tale of Time and Space

Algorithm 3: selectx(i)

1 N ← leaf(x);
2 k ← |c(x)| − 1;
3 while N is not root do
4 N ← N.parent();
5 B ← N.bitvector;
6 b← c(x)[k];
7 i← B.selectb(i);
8 k ← k − 1;

9 return i;

What encoding?

Note that we can encode each character by using just log σ bits8. By implementing each
tree node with the succinct bitvector described in the previous section, the tree takes only
n log σ(1 + o(1)) bits of space. This is (modulo the small o(n log σ) term) exactly the
information-theoretic minimum number of bits required to store any sequence of length n
over Σ. Notably, the tree supports access, rank, and select queries in O(log σ) time.

However, the only requirement we asked for the encoding c() is to be a prefix code.
What happens if we use Huffman encoding? The algorithms described in the previous
section still work, and we obtain a Huffman-shaped wavelet tree. Remarkably, this data
structure takes nH0(1 + o(1)) +n bits of space and answers all queries in (average) O(H0)
time: the tree is both compressed and faster.

Example 11. S = mississippi. Use the Huffman encoding m = 001, i = 01, s = 1, p =
000. Figure 2.4 depicts WT (S) with the shape induced by this encoding.

m 0
i 0
s 1
s 1
i 0
s 1
s 1
i 0
p 0
p 0
i 0

s
1

m 0
i 1
i 1
i 1
p 0
p 0
i 1

i
1

m 1
p 0
p 0

m1

p
0

0

0

Figure 2.4: Huffman-shaped wavelet tree of the string mississippi. Note that the depth of each
leaf is inversely proportional to the frequency of its label: on average, this improves running times
from O(log σ) (of the fixed-length encoding of Figure 2.3) to O(H0).

8For simplicity, we assume the alphabet size is a power of 2. The exact formula is dlog2 σe bits



2.3. Building Blocks 33

Huffman-shaped wavelet trees are all we need to build a simple compressed BWT-based
self-index (Section 2.4.1).

2.3.3 Run-Length Compressed Strings

In this section, we show how to support RSA queries on a string compressed with run-
length encoding (RLE). RLE encoding represents a string S in a space proportional to
the number rS of its equal-letter runs. This compression strategy will turn out to be
particularly effective when applied to the Burrows-Wheeler transform (Section 2.4.2). The
material of this section is taken from Mäkinen et al. [77].

To support RSA queries on a string S ∈ Σn, we store one character per run in a string
H ∈ Σr, we mark the end of the runs with a bit set in a bit-vector Vall[0, . . . , n− 1], and
for every c ∈ Σ we store all c-runs lengths consecutively in a bit-vector Vc as follows: every
m-length c-run is represented in Vc as 0m−11.

Example 12. Let S = bc#bbbbccccbaaaaaaaaaaa. We have H = bc#bcba, Vall =
11100010001100000000001, Va = 00000000001, Vb = 100011, Vc = 10001, and V# = 1

In the following we denote with RLE(S) the above compressed representation of S.
RSA queries on RLE(S) can be reduced to RSA queries on H, Vall, and Vc as follows.

Access to answer RLE(S).access(i), we need to find out the rank of the run containing
text position i. Using this value, we then access H and retrieve S[i]:

RLE(S).access(i) = H[Vall.rank1(i)]

Rank Algorithm 4 reports the pseudocode answering RLE(S).rankc(i) queries. First,
we find the rank t of the run containing position i (Line 1). Then, if the t-th run is a
c-run, we calculate the offset off from the beginning of the run to position i (Line 3),
otherwise we set off = 0 (Line 5). Finally, we count the number k of c’s contained in all
c-runs preceding position i (excluding the current run if it is a c-run, Line 7) and return
off + k (Line 8).

Algorithm 4: rankc(i)

input : Position i on the text, character c ∈ Σ
output: Number of c’s in S before position i excluded

1 t← Vall.rank1(i); /* rank of run contaning position i */

2 if H[t] == c then
3 off ← i− (Vall.select1(t− 1) + 1); /* if t == 0, set off to i */

4 else
5 off ← 0;

6 t′ ← H.rankc(t)− 1; /* ranks of full c-runs before i: 0, ..., t′ */
7 k ← Vc.select1(t′) + 1; /* if t′ == −1, set k to 0 */

8 return off + k;



34 2. Indexing and Compression: a Tale of Time and Space

Select Algorithm 5 reports the pseudocode answering RLE(S).selectc(i) queries. In
Line 1 we discover the rank t (inside Vc) of the c-run containing the i-th c with a rank1

query on Vc. In line 2 we map the t-th c-run on H with a selectc query on H; the result
is the rank t′ of the run containing the i-th c. In Line 3 we discover the first position k of
the t′-th run with a select1 query on Vall (as noted in the pseudocode, if t′ == 0 then we
set k to 0). All we have left to do is to compute the offset off representing the relative
position of the i-th c inside its c-run. This is simply the distance between i and the first
position fp in Vc of the c-run containing the i-th c. In line 4 we compute fp (as noted in
the pseudocode, we have to take care of the special case in which this is the first c-run).
Then (Line 5), off is computed as i− fp. To conclude, we return k + off (Line 6).

Algorithm 5: selectc(i)

input : Integer i ≥ 0, character c ∈ Σ
output: Text position of the i-th c

1 t← Vc.rank1(i); /* c-run containing the i-th c */

2 t′ ← H.selectc(t); /* run containing the i-th c */

3 k ← Vall.select1(t′ − 1) + 1; /* if t′ == 0, set k to 0 */

4 fp← Vc.select1(Vc.rank1(i)− 1) + 1; /* if Vc.rank1(i) == 0, set fp to 0 */

5 off ← i− fp;
6 return k + off ;

Insert If the structures for H, Vall, and Vc, c ∈ Σ, support dynamism, then also insert

operations can be supported on RLE(S). In particular, we need support for insert

queries on H, Vall, and Vc and delete0 queries on Vall and Vc. In Sections 3.3.2, 6.3.1,
and 6.3.2 we describe structures supporting efficiently all these operations.

Here we only give an overview of the strategy to support insert, as the full algorithm
is quite involved9. We can distinguish three main cases. (i) We insert a c inside a c-run.
Then, we have to insert a 0 in Vall and in Vc inside the two runs of zeros corresponding
to the c-run. (ii) We insert a c inside a a-run, with a 6= c (note: not at the end or at
the beginning of the a-run: this case is slightly different). Then: (1) we insert the string
ca inside H after the run-head a corresponding to the splitted a-run, (2) we replace10 a
0 with a 1 inside Va in correspondence to the point where the a-run has been splitted by
the inserted c, (3) we replace a 0 with the pattern 11 inside Vall in correspondence to the
point where the a-run has been splitted by the inserted c, and (4) we insert a 1 in Vc at the
position corresponding to the new c-run. Note that these operations are slightly different
in the case the c is inserted at the end or at the beginning of the a-run. (iii) We insert
a c between a a-run and a b-run, with c 6= a, b and a 6= b. Then: (1) we insert a c in H
between the run heads a and b corresponding to the involved a- and b- runs, (2) we insert
a 1 in Vc at the position corresponding to the new c-run.

9In our library DYNAMIC, the full procedure takes 200 lines of code even using the highest level of
abstraction

10Note that replacing a 0 with a 1 can be implemented with a delete0 and a insert1



2.3. Building Blocks 35

Compression Note that, if we gap-encode bitvectors Vall and Vc with the technique de-
scribed in Section 2.3.1 and implement H with a wavelet tree (Section 2.3.2), the structure
takes O(rS) words of space. Note moreover that none of the queries requires select0 on
the gap-encoded bitvectors: this is important, since we can use an indexable dictionary to
encode these components (e.g. based on Elias-Fano encoding: see, e.g., [94]) rather than
a (more powerful) fully-indexable dictionary (see the beginning of Section 2.3.1 for the
definition of indexable and fully-indexable dictionaries).

2.3.4 Geometric Data Structures

Consider a n×n two-dimensional grid where every row and every column contain exactly
one two-dimensional point (see Table 2.2 for an example), i.e. a permutation of the
numbers {0, . . . , n − 1}. We want to build a data structure that permits to efficiently
answer range reporting queries on the set of grid points: given a rectangle Q on the grid,
report all points in the grid lying inside the rectangle Q. In our case, efficiently means in
time proportional to the number k of reported points. We will describe a solution based
on wavelet trees that solves the problem in O((k + 1) log n) time and n log n(1 + o(1))
bits of space. Note that n log n bits is the information-theoretic lower bound required to
store a generic permutation of {0, . . . , n − 1}, so our solution is optimal in space up to
lower-order terms. See [75] for a full description of the original result.

5 •
4 •
3 •
2 •
1 •
0 •

0 1 2 3 4 5

Table 2.2: Example: 6 × 6-grid with exactly one point per row and column. X and Y positions
are numbered starting from 0. This grid corresponds to the permutation 〈0, 5, 2, 3, 4, 1〉 of the set
{0, 1, 2, 3, 4, 5}.

5 •
4 •
3 •
2 •
1 •
0 •

0 1 2 3 4 5

Table 2.3: Range reporting query on the rectangle Q = [1, 3]× [1, 4]. The result is the set of points
{〈2, 2〉, 〈3, 3〉}

More formally, our data structure should support efficiently the following queries:

Definition 17. 4-sided range reporting. Let 〈i0, . . . , in−1〉 be a permutation of {0, . . . n−
1}, and let P = {〈0, i0〉, ..., 〈n − 1, in−1〉} be a set of points on the n × n grid. Moreover,



36 2. Indexing and Compression: a Tale of Time and Space

let Q = [i′, i′′] × [j′, j′′] be a query rectangle on the grid, where 0 ≤ i′ ≤ i′′ < n and
0 ≤ j′ ≤ j′′ < n. The 4-sided range reporting problem asks to report all points in the
intersection P ∩Q

The structure WT (i0 . . . in−1) (wavelet tree over the sequence i0 . . . in−1) is sufficient to
solve the 4-sided range reporting problem with the above mentioned time bounds. Figure
2.5 depicts how the grid in Table 2.2 is encoded with a wavelet tree.

0 1 0 0 1 0
0 5 2 3 4 1

0 0
5 4

1 0
5 4

5

1

4

0

0

1

0 1 1 0
0 2 3 1

0 1
2 3

3

1

2

0

1

0 1
0 1

1

1

0

0

0

0

Figure 2.5: Wavelet tree for the permutation S = 052341. We encode numbers with 3 bits each by
using the natural binary encoding of integers (e.g. c(5)=101). Only bits are stored (not numbers
in gray). X coordinates of the 2D points are encoded in the position of the sequence, while Y
coordinates are encoded in the sequence content: point 〈x, y〉 is in the structure if and only if
S[x] = y.

Note that every tree node is associated with an interval of Y-coordinates. For example,
the node reached by following from the root the path 01 is associated with the interval
[010, 011] = [2, 3], and the node reached by following from the root the path 1 is associated
with the interval [100, 111] = [4, 7]

At this point, the algorithm to answer 4-sided range reporting queries Q = [i′, i′′] ×
[j′, j′′] using the wavelet tree is easy. We start at the root on the subsequence S[i′, i′′],
and map this interval recursively on children nodes11. We stop whenever we reach a node
whose associated range of Y-coordinates does not intersect [j′, j′′]. At the end, we will
reach d ≤ k intervals on d bitvectors above the leaves. These d intervals contain the k
Y-coordinates of the points in the intersection P ∩Q. We can retrieve their corresponding
X-coordinates by navigating the tree from these positions to the root (select queries). This

11i.e. interval [i′, i′′] on the root forks in the 2 intervals [B.rank0(i′), B.rank0(i′′+ 1)− 1] on child 0 and
[B.rank1(i′), B.rank1(i′′ + 1)− 1] on child 1, where B is the bitvector at the root.



2.4. Compressed Full-Text Indexing 37

procedure terminates in O((k + 1) log n) time. [j′, j′′] is exactly covered by O(log n) tree
nodes. It takes O(log n) time to reach these nodes. From these nodes, all positions in the
intervals that we map to children nodes correspond to solutions, since their Y-coordinates
are contained in the original [j′, j′′] interval. Finally, for each of the k solutions navigate
upwards to the root to retrieve their X-coordinates.

2.4 Compressed Full-Text Indexing

We now have all the ingredients we need to describe two classes of compressed indexes:
FM and LZ indexes.

2.4.1 FM-Indexes

Indexes from the FM-index families achieve high-order compression (close to nHk bits)
and support all queries in time linear in the pattern length. The first index of this kind
was originally proposed by Ferragina and Manzini [33], and is based on the suffix-sorting
properties of the Burrows-Wheeler transform. The data structure is essentially a BWT
with support for rank operations (we do not need select); as we will see, rank permits
to compute efficiently the LF function (Theorem 1), which is at the core of the search
algorithm. In their original proposal, the authors describe a rank solution that works for
constant-sized alphabets; they implement rank on the BWT in constant time by sampling
rank values (for every character) at regular positions of the BWT. The alternative solution
here described is based on wavelet trees and works for general alphabet size.

Backward search

Patterns can be efficiently searched on the BWT using the backward search algorithm.
The reason for this name is that we search the pattern from its last to first character
(right-to-left instead of left-to-right as done in suffix trees or suffix arrays). The algorithm
is based on two observations:

1. All occurrences of P ∈ Σm appear contiguously in a range of rows in the BWT
matrix

2. Let [l, r] be the BWT range of a pattern P . Then, characters in BWT [l, r] precede
the occurrences of P in the text

Refer to Figure 2.1 to understand the meaning of the above observations. For example,
the two occurrences of pattern “iss” occur contiguously at rows 3 and 4 (counting from 0)
in Figure 2.1. Then, characters in BWT [3, 4] = sm precede the two occurrences of “iss”
in the text. This means that, if we map (LF property) all characters ‘s’ (in this case, just
one) from BWT [3, 4] to the F column, we will obtain the range for the pattern “siss”.
Moreover, since all occurrences of “siss” (in this case, just one) appear contiguously in
the BWT matrix, mapping all ‘s’ from BWT [3, 4] to column F will require applying the
LF mapping only to the first and last ‘s’ inside BWT [3, 4]: this means that one backward
search step requires a constant number of (rank) operations. See Figure 2.6 for a graphical
example.



38 2. Indexing and Compression: a Tale of Time and Space

Backward search of the pattern ′si′

F Unknown L

$ mississipp i

fr⇒ i $mississip p

i ppi$missis s

i ssippi$mis s

lr⇒ i ssissippi$ m

m ississippi $
p i$mississi p

p pi$mississ i

fr⇒ s ippi$missi s

lr⇒ s issippi$mi s

s sippi$miss i

s sissippi$m i

Step 1 :
rows prefixed by ′i′





Step 2 :
rows prefixed by ′si′

{

Find first and last ′s′

and apply LF mapping

Figure 2.6: Backward search. To search “si”, first find the range [1, 4] of ‘i’ (this can be easily
done). Then, locate the first and last ‘s’ in BWT [1, 4] (this requires just 2 rank operations), and
map them to the F column, obtaining the range [8, 9] corresponding to pattern “si”.

Two rank operations are enough to perform a backward search step. All we need to
do is to count the number of c ∈ Σ (current character extension) before the beginning and
before the end of the current BWT interval. This gives us the rank of the first and last
c of the new range on the F column. The procedure is reported as Algorithm 6. Here,
BWT.F (c), with c ∈ Σ, is the position of the first c in column F of the BWT matrix
(example: in Figure 2.6, BWT.F (p) = 6). This function can be encoded with an array
taking σ log n bits, or can be computed efficiently using the BWT at no additional space
cost. “fr” and “lr” stand for first and last positions of the BWT range, respectively. At
the beginning, the range [fr, lr] is the full range [0, |T | − 1] corresponding to the empty
string.

Algorithm 6: backward search(P )

1 fr ← 0;
2 lr ← |T | − 1;

3 for i = |P | − 1 downto 0 do
4 c← P [i];
5 fr ← BWT.F (c) +BWT.rankc(fr);
6 lr ← BWT.F (c) +BWT.rankc(lr + 1)− 1;

7 return [fr, lr];

It follows that, with just a Huffman-encoded wavelet tree on the BWT of the text, we
can answer very efficiently count queries in compressed space:



2.4. Compressed Full-Text Indexing 39

F L

$ m i s s i s s i p p i
i $ m i s s i s s i p p
i p p i $ m i s s i s s
i s s i p p i $ m i s s
i s s i s s i p p i $ m

0 m i s s i s s i p p i $
9 p i $ m i s s i s s i p

p p i $ m i s s i s s i
6 s i p p i $ m i s s i s
3 s i s s i p p i $ m i s

s s i p p i $ m i s s i
s s i s s i p p i $ m i

Table 2.4: We augment the BWT with n/t suffix array (SA) samples (here, t = 3)

Theorem 5. WTHuff (BWT (T )) is a partial text index taking n(H0 + 1)(1 + o(1)) bits
of space and supporting count of a pattern P ∈ Σm in average O(m(H0 + 1)) time

How can we support locate and extract? As for locate, the idea is to store on the
BWT a suffix array sample (i.e. a text position) every t text positions, then use LF to
backward-navigate the text until a sample is found.

Example 13. We sample one over t = 3 text positions: mississippi$ (i.e. 0,3,6,9). Table
2.4 depicts how the BWT is augmented with these text positions.

We still have one problem left to solve: how do we store SA samples only on sampled
BWT positions? in the example in Table 2.4, we want to store the samples 0,9,6,3 only
at positions 5,6,8,9 of the BWT. We cannot simply store a ‘0’ in all other positions since
this would require n log n bits (instead of (n/t) log n). The solution is rather simple: we
keep a bitvector B with a ‘1’ in all sampled F-positions of the BWT and ‘0’ in other
positions. Then, we store the SA samples contiguously in a vector SSA (sampled Suffix
Array) of length n/t. If B[i] = 1, then the sample associated with BWT position i is
SSA[B.rank1(i)]. Table 2.5 reports this strategy.

By encoding B with a succinct bitvector data structure, the overall space taken by SSA
+ B is (n/t) log n+n+o(n) bits. We choose t = log1+ε n, where ε > 0 is a constant. Then,
this space becomes n+o(n) bits. We can do better: since12 nH0(B) ∈ O((n/t) log t), then
nH0(B) ∈ O((n/ log1+ε n) log log1+ε n) = o(n), so if we encode B with a RRR-bitvector
(Section 2.3.1) the overall space of SSA + B is only o(n) bits.

Algorithm 7: locate(i)

1 if B[i] = 1 then
2 return SSA[B.rank1(i)];
3 else
4 return 1 + locate(BWT.LF (i));

12To prove this, use the definition of zero-order entropy and the expansion log x = x−1
x

+ 1
2

(
x−1
x

)2
+

1
3

(
x−1
x

)3
+ ....



40 2. Indexing and Compression: a Tale of Time and Space

B F L

0 $ m i s s i s s i p p i
0 i $ m i s s i s s i p p
0 i p p i $ m i s s i s s
0 i s s i p p i $ m i s s
0 i s s i s s i p p i $ m
1 m i s s i s s i p p i $
1 p i $ m i s s i s s i p
0 p p i $ m i s s i s s i
1 s i p p i $ m i s s i s
1 s i s s i p p i $ m i s
0 s s i p p i $ m i s s i
0 s s i s s i p p i $ m i

Table 2.5: We can now store contiguously the sampled suffix array elements in an array
SSA=<0,9,6,3>. To access sample at position i of the F column, access SSA[B.rank1(i)]

The procedure for converting a BWT position to a text position is reported as Algo-
rithm 7. Here, function locate(i) takes as input a position i on the F column of the BWT
matrix and returns the corresponding text position.

Note that, since we sampled one out of t text positions, procedure 7 performs at most
t backward steps. Each step takes O(log σ) time (LF function). In order to locate all
occ = lr − fr + 1 occurrences of a pattern P , first locate its BWT range [fr, lr] with
Algorithm 6. Then, compute locate(i) for every fr ≤ i ≤ lr.

To implement extract, we proceed in a similar way: we pick one out of t text posi-
tions, and on these positions we write the corresponding BWT position. The elements
of this array—called here SBP (sampled BWT positions)—can be stored contiguously
in (n/t) log n bits of space. Then, to extract T [i, ..., i + m] just find the nearest BWT
sample k after text position i + m (i.e. the sample at text position d(i + m)/te · t:
k = SBP [d(i + m)/te]), jump to the BWT at position k and extract (backwards) at
most m+ t characters using the LF function.

Remember that we have chosen t = log1+ε n. Moreover, remember that by using
Huffman-shaped wavelet trees we can improve times on average and achieve compression.
We obtain:

Theorem 6. Huffman-shaped wavelet-tree FM-index (HWT-FMI). WTHuff (BWT (T ))+
B + SSA+ SBP is a compressed self-index taking

n(H0 + 1)(1 + o(1))

bits of space and supporting:

• Count in average O(m(H0 + 1)) time

• Locate in average O((m+ occ log1+ε n)(H0 + 1)) time, and

• Extract in average O((m+ log1+ε n)(H0 + 1)) time



2.4. Compressed Full-Text Indexing 41

Where ε > 0 is a constant fixed at construction time.

Note that H0 + 1 can be much smaller than log σ on compressible texts: compression
both reduces the size of the index and makes it faster.

High-order compression

How can we approach high-order compressed space? Remember that the BWT acts as a
compression booster : this means that there exists a partitioning of the BWT in substrings
such that, if we compress each of them to their zero-order entropy, then the BWT is com-
pressed to nHk bits (for every k). See [31] for full details. A simple (though not optimal)
strategy to achieve this goal is to fix k and to consider the sub-optimal partitioning of
the text induced by length-k contexts. There are in total σk contexts of length k, and for
every context we need to store σ partial ranks storing the rank of every character up to
the beginning of the context. We use a RRR-bitvector to mark context boundaries, and
choose k = α logσ n−1, 0 < α < 1. It can be easily shown that with this data structure we
can answer access and rank queries on the compressed BWT, so we obtain the following:

Theorem 7. HAF-FMI: Huffman-shaped alphabet-friendly FM-index The structure de-
scribed in this section is a compressed self-index taking

n(Hk + 1)(1 + o(1))

bits of space, where k = α logσ n− 1, 0 < α < 1, and supporting:

• Count in average O(m(Hk + 1)) time

• Locate in average O((m+ occ log1+ε n)(Hk + 1)) time, and

• Extract in average O((m+ log1+ε n)(Hk + 1)) time

Note that the choice of using Huffman-shaped wavelet trees improves running times
on average: with balanced WT the multiplicative term (Hk + 1) in the query times is
replaced by log σ.

Note that we can improve the space usage to nHk + o(n log σ) if we use balanced
wavelet trees and encode their nodes with RRR-bitvectors (see Section 2.3.1). The original
proposal described by Ferragina et al. [36]—the alphabet-friendly FM-index (AF-FMI)—
uses this technique. In this case, the multiplicative term (Hk + 1) in all query times is
replaced by log σ and times become worst-case (not average-case). The name of the index
(alphabet friendly) derives from the fact that there is only a logarithmic dependence with
the alphabet size in the space term and query times. In the original proposal [33] of the
FM-index, this dependence was exponential in the space term and linear (w.r.t. σ) in the
query times. Recent results showed that it is possible to attain high-order compression
in FM indexes also using a BWT partitioning based on fixed-size blocks [59]. Even more
remarkably, it can be shown [74] that the zero-order compression scheme of Raman et.
al [105] applied to the whole BWT (without partitioning at all) leads implicitly to high-
order compression.



42 2. Indexing and Compression: a Tale of Time and Space

2.4.2 Run-Length Indexes

A key property of the Burrows-Wheeler transform is that it tends to contain a small
number of equal-letter runs if the text is repetitive. The reason of this behavior is that
repeated substrings are contiguous in the first columns of the BWT matrix, therefore
characters preceding them are contiguous in the BWT. The number r of equal-letter runs
of the BWT is tightly connected with the self-repetitiveness of the text and can be very
small if the text is highly repetitive. Let Σ = {s1, . . . , sσ} be the alphabet. A naive lower
bound on r is Ω(σ). This lower bound is reached in some strings, e.g. (s1s2 . . . sσ)e, for any
e > 0, or in Standard words [79] (i.e. the finite counterparts of Characteristic Sturmian
words). In the worst case however, r can be Θ(n). This is the case—for example—of de
Bruijn sequences of order k > 1. In Section 5.1 we discuss more in detail such cases.

More important for the scope of this thesis is that r is related to the number of
repetitions in the text. In particular, the following important theorem [111] gives an
expected upper bound to the number of runs in the BWT of a highly repetitive text
collection:

Theorem 8. Sirén, 2012 [111]. Let C = {T1, . . . , Tt} be a collection of t copies of a
random text T [1, n] over an alphabet of size σ and r be the number of runs in the BWT of
T . Let C0 be the same collection after randomly substituting a total of s characters with
other characters. Then the expected number of runs in the BWT of collection C0 is at
most r +O(s logσ(tn))

Since each pair of consecutive differences between a text and one of its copies delimits
a repetition in the collection, Theorem 8 links r with the number of self-repetitions of a
(repetitive) text.

The Burrows-Wheeler transform can be compressed with run-length encoding by re-
placing it with the shortest list of pairs RLBWT (T ) = 〈ci, `i〉i=1,...,r, ci ∈ Σ, `i ∈ N
such that BWT (T ) = c`11 c

`2
2 . . . c`rr . Since r can be constant in extremely repetitive texts,

by run-length encoding the BWT we can achieve (up to) exponential compression. Such
representation can be augmented to support RSA queries as described in Section 2.3.3, and
enables the definition of a simple run-length FM index, dubbed here rlbwt. To improve
readability, in what follows we drop the (1 + o(1)) multiplicative term present in all space
analysis.

Theorem 9. rlbwt index. Let k > 0. The rlbwt index is a compressed self-index taking

r(2 log n+ log σ) +O(r) + (n/k) log n

bits of space and supporting:

• Count in O(m log n) time

• Locate in O((m+ occ · k) log n) time, and

• Extract in O((m+ k) log n) time

Proof. We encode the BWT with a run-length string as described in Section 2.3.3, using
the gap-encoded bitvector described in Section 2.3.1 and a wavelet tree (Section 2.3.2) to
encode its components. Letting k > 0 be the sampling factor, Theorem 9 easily follows.



2.4. Compressed Full-Text Indexing 43

Note: by using the fully indexable dictionary of [48] to encode bitvectors, the leading
term in the space of Theorem 9 can be reduced to r(2 log(n/r) + log σ) + (n/k) log n bits,
and the log n multiplicative term in all query times can be reduced to13 o(

√
log r) + log σ.

Space can be reduced to 2r log(n/r) + r log σ + O(r) + (n/k) log n bits also by using an
Elias-Fano indexable dictionary [26, 28, 94] to encode gap-lengths. In this case, the log n
multiplicative term in all query times is reduced to log(n/r) + log σ. This last solution is
more practical, and efficient C++ implementations are available [43].

Another approach to run-length encoded indexes is that of combining compressed suffix
arrays with run-length encoding. Compressed suffix arrays store in a compressed form the
inverse ψ of LF function. It can be shown that ψ can be decomposed in σ strictly increasing
subsequences, therefore it can be efficiently compressed with gap-encoding techniques (e.g.
Elias delta or gamma encoding [27]). Another way to compress ψ is to replace each
subsequence of integers 〈j, j+ 1, j+ 2, . . . , j+ k〉 with its length k (opportunely encoded).
It can be shown [77, 111] that the number of such subsequences is r, i.e. the number of
runs in the BWT of the text. This enables the definition of an index—the run-length
compressed suffix array (rlcsa)—with the following space-time bounds:

Theorem 10. rlcsa [77,111]. The rlcsa (run-length compressed suffix array) is a com-
pressed self-index taking

r(2 log(n/r) + log σ)(1 + ε) + (n/k) log n

bits of space for any k, ε > 0, and supporting:

• Count in O(m log n) time

• Locate in O((m+ occ · k) log n) time, and

• Extract in O((m+ k) log n) time

Note that all above solutions have a r log(n/r) extra spatial term with respect to a
direct run-length encoding of the BWT (which can be represented in just r log(n/r)+r log σ
bits). This is due to the fact that runs are represented twice (separately for each character
and globally for the whole sequence). One of the contributions of this thesis is to show
(Section 5.3.2) how to reduce the coefficient of the term r log(n/r) from 2 to (1 +o(1)). In
practice (see Chapter 7), this will almost halven the space of the rlcsa while maintaining
its time efficiency.

2.4.3 LZ-Indexes

Let us now move to a completely different indexing paradigm: indexes based on the
Lempel-Ziv factorization. First of all, why do we need indexes based on yet another com-
pression scheme? After all, entropy-compressed FM-indexes reach optimal space bounds—
with respect to Hk—and nearly-optimal running times. The problem with such indexes
is the compression scheme itself: entropy compression is not good if the text is highly
repetitive.

13The exact time bound for rank operations—AT (n, r)—is more involved and we do not report it here.
See the original paper [48] for full details.



44 2. Indexing and Compression: a Tale of Time and Space

Consider a text T , and a collection of texts T1, ..., Tq that are almost identical14 to T .
What is the size of the entropy-compressed concatenation T1...Tq? To simplify analysis,
we can assume T1 = ... = Tq = T . Remember that Hk is defined using only character
frequencies in the text. Note that in the concatenation TT character frequencies are the
same as in the text T ; as a result, Hk(TT ) ≈ Hk(T ) and therefore (generalizing this to q
copies of T ) qnHk(T

q) ≈ qnHk(T ): the compressed representation of T q takes q times the
compressed representation of T (see Kreft and Navarro [67] for a more formal proof). We
can easily do much better than that: for instance, we could compress T and append the
note “decompress and copy q times”. This representation takes only nHk(T ) + O(log q)
bits. It is therefore clear that entropy compression is not good for repetitive texts.

In Section 2.2.3 we got the impression that LZ compressors are particularly good for
repetitive texts. This impression is correct. Let zX(T ) (X=77,78) be the number of
LZX factors of T . It is easy to see that z77(T q) = z77(T ) + 1: the LZ77-compressed
representation of T q takes almost the same space of the LZ77-compressed representation
of T . LZ78 is less powerful but—as we will see—easier to index. In this section we study
a compressed index based on LZ78 or LZ77 (the technique works for both compressors).
This index requires the text stored in plain format (n log σ additional bits) in order to
work, so it is not a self-index. We conclude by showing how to get rid of the text turning
the index into a self-index. From now on, z will denote zX(T ) (X=77,78 will be clear from
the context).

State of the art

We quickly review the state of the art in the field of LZ-based indexing.

• KU-LZI (LZ78). Kärkkäinen and Ukkonen, 1996 [60]. O(z log n) + (1 + o(1))n log σ
bits of space, O(m2 + occ logε n) locate. Not a self-index.

• FM-LZI (BWT+LZ78). Ferragina and Manzini, 2005 [34]. Combines the FM-index
with LZ78. O(nHk logε n) + o(n log σ) bits of space, where ε > 0, k ∈ o(logσ n).
Optimal O(m+ occ) locate time.

• NAV-LZI [83] (LZ78). Navarro, 2004. O(z log n) bits of space, O(m3 log σ + (m +
occ) log n) locate. Self-index based on LZ78.

• KN-LZI [67] (LZ77). Kreft and Navarro, 2011. O(z log n) bits, O((m2h + (m +
occ) log z) log(n/z)) locate. Self index based on LZ77. h is the height of the parse,
see Definition 11.

Note that NAV-LZI and KN-LZI reach O(z log n) bits of space. All other indexes have
a o(n) space term. In Section 2.2.5 we considered the spatial term o(n) acceptable. Here,
we are going to change our mind: o(n) can be exponentially bigger than z (when using the
LZ77 compression scheme), so an index fully exploiting the compression power of LZ77
should take only O(z log n) bits of space.

In this section we first study a full-text index based on LZ77/LZ78 using techniques
from Kärkkäinen and Ukkonen [60], Navarro [83], and from Kreft and Navarro [67] (the
material presented in this section is therefore not new; see these works for full details).
The index offers the following tradeoffs:

14e.g. all revisions of a software or a Wikipedia web page



2.4. Compressed Full-Text Indexing 45

• O(z log n) + n log σ bits of space

• O(m(m+ log z) + occ log z)-time locate

This index is not a self-index as we need the plain text to operate on it. We describe
the structure using LZ78, but with small modifications the technique works also with
LZ77.

Finally, by using a technique from NAV-LZI [83], we get rid of the text, turning the
index into a self-index. This will give us an index of size O(z log n) bits with the same
query times as above. This technique works only with LZ78. We conclude (using ideas
from [67]) by sketching how to apply the same ideas to LZ77-based self indexing.

A LZ-based full-text index

We first give an overview of the strategy we will use to locate pattern occurrences with
LZ-indexes. Consider the following LZ78-parsed text. We underline an occurrence of the
pattern P = GACAC we are searching.

LZ78(T#) = A|C|G|CG| AC|ACA|CA|CGG|T|GG|GT|#

In order to locate the occurrence:

1. Split P in 2 parts: the one contained in the rightmost phrase (AC) and the rest
(GAC)

2. Find the interval [lfw, rfw] of AC among the lexicographically sorted LZ phrases

3. Find the interval [lrev, rrev] of CAG (GAC reversed) among the lexicographically
sorted reversed text prefixes that end at phrase boundaries (e.g. the first 4 such
reversed prefixes are A, CA, GCA, GCGCA)

4. We build a geometric range structure connecting adjacent text prefixes and LZ
phrases. With a 4-sided range search on the interval [lfw, rfw]×[lrev, rrev] we retrieve
the text position of the pattern split

If—on the other hand—the occurrence of P is entirely contained in a phrase, we will
use a different strategy: in this case, the occurrence is entirely copied from the phrase
source. We will therefore first recursively find this source and then retrieve the occurrence
contained in the phrase. Also this can be implemented using range search. Note that in
step (1) we do not know how the pattern is split, so we have to try all possible m splits.

As pointed out in the above example, we need to treat separately two kinds of pattern
occurrences:

1. Primary occurrences: those spanning at least two LZ phrases or that end a phrase

2. Secondary occurrences: those contained in a single LZ phrase (and that do not
end a phrase)

Let us start by introducing a fundamental structure in LZ78 indexes: the LZ78 trie.



46 2. Indexing and Compression: a Tale of Time and Space

LZ78 trie Each LZ78 phrase adds a character to a previous phrase, so all phrases can
be organized in a trie with z + 1 nodes15.

Example 14. Consider the text factored as

LZ78(T#) = A|C|G|CG|AC|ACA|CA|CGG|T|GG|GT|#.

The resulting LZ78 trie is the following:

root

#
A

C

A

C

A
G

G

G

G T

T

Phrases are in bijection with tree nodes (root excluded), so the trie has exactly z + 1
nodes. We can store this structure in O(z log z + z log σ) ⊆ O(z log n) bits.

Consider now the lexicographic order of the LZ78 phrases. We can easily augment the
LZ78 trie with the range [lfw, rfw] of lexicographic ranks of phrases in the subtree rooted
in every trie node.

Example 15. The lexicographic order of the phrases in Example 14 is:

0. #
1. A
2. AC
3. ACA
4. C
5. CA
6. CG
7. CGG
8. G
9. GG
10. GT
11. T

Example 16. We use the following notation on trie nodes to indicate lexicographic ranges:
c[lfw,rfw], where c ∈ Σ is the node label. Example: node corresponding to G is augmented
with the interval [8, 10] because all LZ78 phrases starting with G are (in order) G, GG, GT
and their ranks are 8,9,10, respectively. Note that storing these ranges requires O(z log n)
bits of additional space.

15The LZ78 trie is the main reason why LZ78 is easier to index than LZ77: in the latter, phrases cannot
be organized in a (small) trie



2.4. Compressed Full-Text Indexing 47

root

#[0,0]

A[1,3]

C[2,3]

A[3,3]

C[4,7]

A[5,5]

G[6,7]

G[7,7]

G[8,10]

G[9,9] T[10,10]

T[11,11]

Now we are going to do the same with reversed text prefixes ending at phrase bound-
aries.

Example 17. Using the text of the above examples, the lexicographic order of reversed
text prefixes ending at phrase boundaries is:

0. #TGGGTGGCACACACAGCGCA
1. A
2. ACACACAGCGCA
3. ACACAGCGCA
4. CA
5. CAGCGCA
6. GCA
7. GCGCA
8. GGCACACACAGCGCA
9. GGTGGCACACACAGCGCA
10. TGGCACACACAGCGCA
11. TGGGTGGCACACACAGCGCA

Note that there are exactly z suffixes, but if we organize them in a trie we end up with
O(zn) nodes. However, the trie has z leaves, so the number of internal nodes with at least
two children (explicit nodes) is O(z). We use the same technique employed in suffix trees:
path compression. Instead of storing explicitly unary paths, we store 2 pointers [begin, end]
to the text (where begin > end: we read the text backwards). For each explicit node N ,
we also store the interval [lrev, rrev] of lexicographic ranks of the strings in the subtree
rooted in N . This tree takes O(z log n) bits of space. Note that we need access to the text
to reconstruct unary paths, so we store it in plain format: n log σ additional bits.

Example 18. For clarity, we write only [begin, end] labels. [lrev, rrev] labels can be added
easily in the picture as we have done in Example 16. The parsed text is (we write also text
positions for clarity):

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A | C | G | C G | A C | A C A | C A | C G G | T | G G | G T | #

The resulting path-compressed tree of all reversed text prefixes ending at phrase boundaries
is:



48 2. Indexing and Compression: a Tale of Time and Space

root

[20, 0] [9, 5]

[6, 0] [4, 0]

[6, 5]

[4, 0]

G

C

A [2, 0]

G

[12, 0] [15, 0]

[15, 13]

[12, 0] [16, 0]

Note: if we wish to use LZ77 instead of LZ78, the trie of phrases can have more than
O(z) nodes (up to O(n)). However, if we have access to the plain text, we can represent
the LZ77-trie in O(z log n) bits with path compression. The index described in this section
therefore works also with LZ77.

Handling primary occurrences We are now going to create a geometric range struc-
ture to connect LZ phrases with the text prefixes that precede them. For each phrase
starting at position t > 0 in T , let i be the lexicographic rank of the (reversed) prefix
ending in position t− 1, and j be the lexicographic rank of the phrase starting in position
t. We add a labeled 2D point 〈〈i, j〉, t〉 to the range structure 16. Since we store z − 1
labeled points on the coordinate space [0, z− 1]× [0, z− 1] and z− 1 labels, this structure
takes z log z(1 + o(1)) + z log n ∈ O(z log n) bits of space. Note that with this structure
a range search query is answered in time O((occ+ 1) log z). Figure 2.7 reports the range
structure resulting from the text in the previous examples.

Algorithm 8 shows the full procedure to find all primary occurrences. Here, rev tree,
trie, and Geom 4 sided are the tree of reversed text prefixes ending at phrase boundaries,
the trie of phrases, and the 4-sided geometric structure, respectively.

Algorithm 8: primary(P )

input : Pattern P = p1 . . . pm ∈ Σm

output: Set of all pairs 〈l, r〉 such that P = T [l, . . . , r] and T [l, . . . , r] is a primary occurrence of P

1 m← |P |;
2 OCC ← ∅;
3 for k = 1, . . . ,m do

4 [lrev, rrev]← rev tree.range(pk...p1);

5 [lfw, rfw]← trie.range(pk+1 . . . pm); /* If k = m this is the full range */

6 S ← Geom 4 sided.report([lrev, rrev]× [lfw, rfw]); /* set of points 〈〈i, j〉, t〉 in the query

rectangle */

7 for each 〈〈i, j〉, t〉 ∈ S do
8 OCC ← OCC ∪ {〈t− k, (t− k) +m− 1〉};

9 return OCC;

Figure 2.7 reports the search of the pattern CAC with split CA/C. We have to perform
a range search for all the splits C/AC, CA/C, and CAC/. It follows that the complexity

16i.e. we store the point 〈i, j〉, and keep a vector LABELS of size z − 1 such that LABELS[i] = t



2.4. Compressed Full-Text Indexing 49

of locating all occ1 primary occurrences is O(m(m+ log z) + occ1 log z). The only way to
count occurrences is to locate them with this procedure, so count and locate (of primary
occurrences) have the same complexity.

$T
G
G
G
T
G
G
C
A
C
A
C
A
C
A
G
C
G
C
A

A A
C
A
C
A
C
A
G
C
G
C
A

A
C
A
C
A
G
C
G
C
A

C
A

C
A
G
C
G
C
A

G
C
A

G
C
G
C
A

G
G
C
A
C
A
C
A
C
A
G
C
G
C
A

G
G
T
G
G
C
A
C
A
C
A
C
A
G
C
G
C
A

T
G
G
C
A
C
A
C
A
C
A
G
C
G
C
A

T
G
G
G
T
G
G
C
A
C
A
C
A
C
A
G
C
G
C
A

$

A

AC

ACA

C

CA

CG

CGG

G

GG

GT

T

1

2

3

5

7

15

16

18

20

10

12

Figure 2.7: Strategy to find primary occurrences. In this example, we search the pattern CAC
and we consider the split CA/C. Then, [lrev, rrev] = [2, 3] and [lfw, rfw] = [4, 7]. The rectangle
[2, 3]× [4, 7] contains the labels 12 and 10. There are 2 characters (CA) at the left of the pattern
split, so the primary occurrences of CAC (with split CA/C) in the text are 12 − 2 = 10 and
10− 2 = 8.

Handling secondary occurrences We can locate secondary occurrences either by
using the LZ78 trie [60, 83] or by looking from where such occurrences are copied in the
text with the help of a geometric data structure [67]. We are going to follow this second
strategy (since it works also with LZ77). The following material is taken from [67]. The
next theorem guarantees that if we follow (right-to-left) a chain of substring copies we end
up in a primary occurrence:

Theorem 11. Each text substring P has at least one primary occurrence

Proof. Consider the leftmost secondary occurrence of P , at position i. Then, by definition,
this occurrence is contained in a phrase Z. Z is copied from a previous text position, so P
appears in the text also in another position j < i. If we assume that the occurrence of P in



50 2. Indexing and Compression: a Tale of Time and Space

position j is secondary we obtain a contradiction because we assumed that the occurrence
in i was the leftmost. It follows that the occurrence of P in position j is primary.

Note that Theorem 11 shows that following right-to-left a chain of copies from a sec-
ondary occurrence , we must end up in a primary occurrence. This gives us a strategy to
find secondary occurrences: first find all primary occurrences, and then look for phrases
entirely copying them. Repeat this recursively (a secondary occurrence can be copied from
a secondary occurrence) until no more occurrences are found.

The problem we need to solve is then the following: how do we find which phrases
entirely copy T [i, . . . , j]? In [83] this problem is solved using the LZ78 trie itself. Here
we discuss the alternative and more general solution of Kreft and Navarro [67] based
(again) on range search. This solution works also with LZ77 (unlike the one discussed by
Navarro [83]). For each phrase Z = T [t, ..., t′] copied from T [i′, ..., j′] (t′ − t = j′ − i′), we
add a labeled 2D point 〈〈i′, j′〉, t〉. Then, to find phrases copying P = T [i, . . . , j] we query
the structure on the rectangle [0, i] × [j,∞]. This query is called 2-sided since the query
area is delimited by only two parameters (i and j). Figure 2.8 depicts this strategy for a
single phrase Z and for a query point (text substring) P .

T
i ji’ j’ t t’

ZP

i’ i

j’

j
P

Z

Figure 2.8: Pattern P occurs in T [i, ..., j] and Z entirely copies it. It follows that P occurs also in
T [t+ (i− i′), ..., t+ (j − i′)]. Note that Z is a point inside the structure, while P is a query point
(we do not insert P in the structure)

Note we have two potential problems: (1) some x-coordinates will not have an as-
sociated point (because n ≥ z) and (2) there could be multiple points sharing their x-



2.4. Compressed Full-Text Indexing 51

coordinate (this happens when 2 or more phrases are copied from the same text position).
This means that we need to solve a more general problem than the one discussed in Section
2.3.4. Problem (1) can be solved by re-mapping positions from the domain [0, n − 1] to
[0, z− 1]. This can be done in O(z log n) bits of space by storing x-coordinates in increas-
ing order in a plain vector V . Then, re-mapping coordinates from [0, n − 1] to [0, z − 1]
requires just two binary searches on V . In problem (2), two (or more) points 〈i, j′〉 and
〈i, j′′〉 share the same x-coordinate. In this case we can insert a new empty column17 at
position i+ 1 and modify the second point to 〈i+ 1, j′′〉. We then mark position i with a
’1’ and position i+ 1 with a ’0’ in an auxiliary succinct bitvector B of total size z + o(z)
bits. It can be shown that B and V are sufficient to reduce the general problem to the
special case (permutation) described in Section 2.3.4.

The procedure to recursively find secondary occurrences is reported as Algorithm 9.
Here, Geom 2 sided is the geometric 2-sided range structure.

Algorithm 9: secondary(i, j)

input : Boundaries i ≤ j of a pattern occurrence T [i, . . . , j]
output: Set of pairs 〈l, r〉 such that T [i, . . . , j] = T [l, . . . , r] and T [l, . . . , r] is in the chain of copies

starting in T [i, . . . , j]

1 S ← Geom 2 sided.report([0, i]× [j,∞]); /* Returns set of labeled points 〈〈i′, j′〉, t〉 in the

query rectangle */

2 OCC ← ∅;
3 for each 〈〈i′, j′〉, t〉 ∈ S do

4 l← t+ (i− i′);
5 r ← t+ (j − i′);
6 OCC′ ← secondary(l, r);
7 OCC ← OCC ∪OCC′ ∪ {〈l, r〉};
8 return OCC;

While Theorem 11 ensures that we will find all secondary occurrences, it does not prove
that we will report each of them just once. We have therefore to show that any two sets
of secondary occurrences obtained with Algorithm 9 starting from two distinct primary
occurrences are disjoint.

Theorem 12. Let T [l, . . . , r] = T [l′, . . . , r′], with l′ > l, be two distinct primary occur-
rences of a pattern P . Then,

secondary(l, r) ∩ secondary(l′, r′) = ∅

Proof. In the following we use the notation T [i, . . . , j] = T [i′, . . . , j′] to indicate that i = i′

and j = j′.
Assume by contradiction that there exists a 〈l′′, r′′〉 ∈ secondary(l, r)∩secondary(l′, r′).

It must be the case that l′′ > l′ > l, since phrases are copied from previous positions.
Let the notation T [i, . . . , j]→ T [i′, . . . , j′], with T [i′, . . . , j′] secondary occurrence, indi-

cate that text substring T [i′, . . . , j′] is copied from T [i, . . . , j] (i.e. T [i′, . . . , j′] is contained
in a phrase whose source contains T [i, . . . , j]). The chain of copies starting in T [l, . . . , r]
and ending (by assumption) in T [l′′, r′′] is

T [l, . . . , r]→ T [l1, . . . , r1]→ · · · → T [lk, . . . , rk] = T [l′′, r′′]

17i.e. we also increase by 1 x-coordinates of points after column i



52 2. Indexing and Compression: a Tale of Time and Space

Analogously, the chain of copies starting in T [l′, . . . , r′] and ending (by assumption) in
T [l′′, r′′] is

T [l′, . . . , r′]→ T [l′1, . . . , r
′
1]→ · · · → T [l′k′ , . . . , r

′
k′ ] = T [l′′, r′′]

We distinguish two cases:

1. k = k′. We prove by induction on k that l = l′ (obtaining therefore a contradiction
since l′ > l). If k = 1, then the two chains of copies are

T [l, . . . , r]→ T [l1, . . . , r1] = T [l′′, r′′]

and

T [l′, . . . , r′]→ T [l′1, . . . , r
′
1] = T [l′′, r′′]

By definition of LZ parsing a phrase is copied only from one location, therefore,
since T [l1, . . . , r1] = T [l′1, . . . , r

′
1], we obtain l = l′ (absurd). If k > 1, then the two

chains of copies are

T [l, . . . , r]→ · · · → T [lk−1, . . . , rk−1]→ T [lk, . . . , rk] = T [l′′, r′′]

and

T [l′, . . . , r′]→ · · · → T [l′k′−1, . . . , r
′
k′−1]→ T [l′k′ , . . . , r

′
k′ ] = T [l′′, r′′]

Since T [lk, . . . , rk] = T [l′k′ , . . . , r
′
k′ ], with the same reasoning used above we obtain

lk−1 = l′k′−1. We can therefore use the inductive hypothesis on the “truncated”
chains and obtain again l = l′.

2. k < k′ (the case k′ < k is symmetric). We prove by induction on k that l = l′i for
some 1 ≤ i < k′. This is an absurd because T [l, r] is a primary occurrence, while
T [l′i, r

′
i] is a secondary occurrence. If k = 1, the two chains of copies are

T [l, . . . , r]→ T [l1, . . . , r1] = T [l′′, r′′]

and

T [l′, . . . , r′]→ · · · → T [l′k′−1, . . . , r
′
k′−1]→ T [l′k′ , . . . , r

′
k′ ] = T [l′′, r′′]

Then, since T [l1, . . . , r1] = T [l′k′ , . . . , r
′
k′ ] and, by definition, a LZ phrase has only

one source, we get l = l′k′−1 (absurd). If k > 1, then the two chains of copies are

T [l, . . . , r]→ · · · → T [lk−1, . . . , rk−1]→ T [lk, . . . , rk] = T [l′′, r′′]

and

T [l′, . . . , r′]→ · · · → T [l′k′−1, . . . , r
′
k′−1]→ T [l′k′ , . . . , r

′
k′ ] = T [l′′, r′′]

Since T [lk, . . . , rk] = T [l′k′ , . . . , r
′
k′ ], with the same reasoning used above we obtain

lk−1 = l′k′−1. We can therefore use the inductive hypothesis on the “truncated”
chains and obtain again an absurd.



2.4. Compressed Full-Text Indexing 53

Combining the two procedures Combining the two procedures is now easy: just find
all primary occurrences and then apply procedure secondary to each of them. The full
procedure for finding pattern occurences with our index is reported as Algorithm 10.

Algorithm 10: locate occ(P )

input : Pattern P ∈ Σm

output: All pairs 〈i, j〉 such that P = T [i, . . . , j]

1 OCC ← ∅;
2 S ← primary(P );

3 for each 〈i, j〉 ∈ S do
4 OCC′ ← secondary(i, j);
5 OCC ← OCC ∪OCC′;

6 OCC ← OCC ∪ S;

7 return OCC;

We can state our result:

Theorem 13. The LZ index we described is a full-text index based on LZ78/LZ77 taking

O(z log n) + n log σ

bits of space and supporting count and locate in O(m(m+log z)+occ log z) time, occ being
the number of occurrences of P in T . The text is stored in plain format, so extract is
supported in optimal time.

A LZ78 self-index

Actually, if we restrict our attention to LZ78 it is quite easy to turn the LZ full-text
index into a self-index. The LZ78 trie property we are going to exploit—taken from
Navarro [83]—is the following: the LZ78 trie can be augmented with 2z pointers to nodes
(2z log z bits) so that it supports the extraction of any length-L substring of the reversed
text in optimal O(L) time (given a starting point). Instead of using the text, we can then
use the LZ78 trie itself to support path compression in the sparse suffix tree.

Note that:

1. There is a bijection between LZ78 phrases and trie nodes (root excluded)

2. The relation from text positions to trie nodes (root excluded) is a surjective function:
each trie node corresponds to ≥ 1 text positions and each text position is associated
to only one node

We are going to link each phrase (node) with the phrase (node) preceding it in the
text. To extract (backwards) a text substring, we then need just to follow parent links
from a node to the root, and then jump to a new node (previous phrase) by following
previous-phrase links. Let X and Y be two LZ78 phrases (i.e. two nodes of the trie). we
add the following edges:

• Parent: if Y is child of X in the trie, then we add the edge π(Y ) = X



54 2. Indexing and Compression: a Tale of Time and Space

• Previous phrase: if X immediately precedes Y in the text then we add the edge
pr(Y ) = X

We need to take care of these particular cases:

• π(root) = root

• If X is the first text phrase, pr(X) = NULL

To simplify the description, we assume that we do not reach T [0] during extraction.
Suppose we want to extract (backwards) m text characters starting from text position i.
Let:

• X be the phrase (i.e. trie node) containing position i

• N be the trie node corresponding to text position i

Note that phrases can be identified with an integer in [0, z − 1]. To start extraction,
we just need the coordinate pair 〈X,N〉. The full procedure is reported as Algorithm 11.
Figure 2.9 depicts an example of extraction.

Algorithm 11: extract(〈X,N〉,m)

1 if m = 0 then
2 return ε; /* return empty string */

3 c← char(N); /* character stored in node N */

4 if π(N) = root then
5 X ← pr(X); /* jump to previous phrase */

6 N ← X; /* next character is the last of previous phrase */

7 return extract(〈X,N〉,m− 1) · c; /* next m− 1 chars concatenated with this char */

8 else
9 return extract(〈X,π(N)〉,m− 1) · c;

To complete our index, we only need to substitute intervals [begin, end] in the sparse
suffix tree with pairs 〈〈X,N〉, L〉, where:

• X is the phrase (trie node) containing text position begin

• N is the trie node corresponding to T [begin]

• L = begin− end+ 1

We finally obtain:

Theorem 14. The LZ index described in this section is a self-index based on LZ78 taking

O(z log n)

bits of space and supporting count and locate in O(m(m+log z)+occ log z) time, occ being
the number of occurrences of P in T .

extract of arbitrary text substrings requires some other structures not discussed here
(we basically need to implement space-efficiently the function that maps text positions to
trie nodes).



2.5. Online Construction of the Burrows-Wheeler Transform 55

A|C|G|CG|AC|A←−−−−−−−−CA|CA|CGG|T |GG|GT |$

root

$
A

C

A

C

A
G

G

G

G T

T

Figure 2.9: Using the LZ78 trie to extract text. We want to extract (backwards) m = 6 characters
starting from position i = 13. The phrase (trie node) containing position i is CGG. Position
i corresponds to node CG in the trie. The starting point in the trie is therefore 〈CGG,CG〉.
We climb the trie up to the root, extracting characters GC. At this point, we jump to node
pr(CGG) = CA. We climb up to the root extracting characters AC, and then jump to node
pr(CA) = ACA. We extract the remaining 2 characters AC.

A LZ77 self-index

In this paragraph we quickly sketch how to build a LZ77-based self-index. See Kreft and
Navarro [67] for more details and a more efficient solution. The only ingredient we need
to add to the LZ77 full-text index of Section 2.4.3 is the ability to extract text characters
from a LZ77-compressed version of the text (we need this to perform path compression
on the trees). We can easily support this operation by using the representation of LZ77
as triples 〈text position, length, char〉, plus a vector storing the beginning of LZ phrases.
In order to extract T [i], just locate the phrase containing text position i (binary search
on the vector storing the beginning of LZ phrases) and find out the position j < i from
where T [i] is copied by using the triples representation. We need to recursively repeat this
operation at most h times, where h is the height of the LZ77 parse (see Definition 11). In
this index, all queries are therefore supported with an additional multiplicative factor of
O(h log z) (h binary searches). The solution presented by Kreft and Navarro [67] is more
involved but reduces the time to extract a character to O(h).

2.5 Online Construction of the Burrows-Wheeler Transform

Most of the results discussed in this thesis rely on a well-known online BWT construction
algorithm based on the concept of backward search [12, 76, 77]. The algorithm builds
BWT (T ) inO(n) steps by inserting T characters from right to left in a dynamic string data
structure. The concept is rather simple: we remind that the backward search algorithm
permits to find the lexicographic range of a string among all text suffixes. Now, consider
the problem of computing BWT (cT ) starting from BWT (T ). The idea is to backward-



56 2. Indexing and Compression: a Tale of Time and Space

search the string cT inside BWT (T ). The result is an empty range (empty because
cT does not appear in T ) [t, t), where t is the lexicographic range of cT among all T ’s
suffixes. At this point, all we have to do in BWT (T ) is to replace the terminator $ with
the new character c (because now c follows the terminator in the circular text cT ) and
insert a new terminator at position t (because the new inserted text suffix ends with $).
Most importantly, each character extension requires only a constant number of queries
on BWT (T ) (we do not actually need to search the whole cT inside it). As depicted in
Figure 2.10, the insert position t can be computed by finding the c preceding $ (one rank
operation) and by applying the LF mapping (in the example, c =′ s′ and T = ississippi$).
Figure 2.11 depicts BWT (cT ) after the updates.

Left-extend ississippi$ with an ’s’

F Unknown L

$ ississipp i

i $ississip p

i ppi$issis s

i ssippi$is s

i ssissippi $
p i$ississi p

p pi$ississ i

s ippi$issi s

s issippi$i s

s sippi$iss i

s sissippi$ i

Step 1 :
Find last ’s’ before ’$’

and apply LF mapping

Step 2:

insert new suffix

’sississippi$’

after the mapped

position

Step 3:

replace old ’$’ with

the new inserted

character ’s’

Figure 2.10: Building BWT (cT ) starting from BWT (T ) (a). We need to find the lexicographic
position of the new text suffix (in the example, sississippi) among T ’s suffixes. The insert
position t can be found by searching the new text suffix in BWT (T ) with backward search. On
the BWT, this will result in two updates: the terminator $ is inserted at position t (because it
ends the new suffix), and the old terminator is replaced with the inserted letter (which follows the
terminator in the extended text).

Analysis

The update algorithm above described can be used to build BWT (T ) inO(|T |) steps. Note
that we need to perform insert, rank, and replacement operations on a string, therefore
we need a dynamic string data structure. It is easy to implement such a structure by
using red-black trees. The idea is to store string characters in the leaves of the tree and
augment each internal node with counters storing the total count of each character (in



2.5. Online Construction of the Burrows-Wheeler Transform 57

Left-extend ississippi$ with an ’s’

F Unknown L

$ sississipp i

i $sississip p

i ppi$sissis s

i ssippi$sis s

i ssissippi$ s

p i$sississi p

p pi$sississ i

s ippi$sissi s

s issippi$si s

s ississippi $
s sippi$siss i

s sissippi$s i

Figure 2.11: Building BWT (cT ) starting from BWT (T ) (b). In yellow, the new text suffix and
the new letter appearing in the BWT are highlighted. On the BWT, there are only two updates:
$ is replaced with the new letter, and a new terminator is inserted at the position of the new text
suffix.

order to implement rank) and the size of the substring represented by the node. This
approach requires O(nσ log n) bits of space and is therefore not feasible in practice. One
could remove the σ term by employing wavelet trees (see Section 2.3.2); it is easy to
show how to reduce insert operations on generic strings to inserts on a binary string
by using wavelet trees with only a log σ slowdown in all operations. Space usage could
be further improved by packing Θ(log n) bitvector’s bits in a single tree leaf (therefore
reducing the number of leaves to O(n/ log n)). This approach, adopted by Lippert et
al. [70], requires O(n log σ) bits of space and supports all operations on the dynamic
string in O(log n log σ) time. Finally, one could aim at using only compressed space. The
complexity of this approach is deeply influenced by the inherent complexity of dynamic
string data structures, which have been proved to have a Θ (log n/log logn) lower [40] and
(amortized) upper [87] bound for queries and updates. In particular, the result in [87] has
as direct consequence (clearly mentioned in that paper) that the BWT can be constructed
in nHk + o(n log σ) bits of space and O (n log n/log log n) worst-case time. In Section 3.2
we show that in the average case we can beat the lower bound and build the BWT in just
O((Hk + 1)) time per character while using compressed working space. In Section 3.3 we
consider how to build a run-length compressed BWT.



58 2. Indexing and Compression: a Tale of Time and Space



3
Computing the BWT in Compressed

Working Space

In many applications it is often not feasible to load the whole dataset in RAM in order to
compress it. Ideally, one would aim at using an amount of working space proportional to
the output of the compressor while performing compression.

This chapter is devoted to the problem of building a compressed Burrows-Wheeler
Transform while using a compressed amount of working space. The content of the chapter
is based on papers (i), (iii), and (iv). We remind (see Section 1.4) that r denotes the
maximum between the numbers of runs in the Burrows-Wheeler transforms of the text
and of the reversed text. We provide algorithms to compute:

• The Burrows-Wheeler transform using high-order compressed working space. The
algorithm runs in average O((Hk + 1)) time per character on nearly-uniform texts
(e.g. DNA)

• The Burrows-Wheeler transform in O(n log r) time and O(r) words of working space

Our solutions are based on the online BWT construction algorithm described in Section
2.5.

3.1 Related Work

Building the Burrows-Wheeler transform is still a bottleneck in many applications, includ-
ing text compression and the construction of compressed self-indexes. To date, none of
the solutions in the literature is able to guarantee simultaneously both O(n) construction
time and nHk + o(n log σ) bits of space. The most time-efficient (also in practice) O(n)
techniques to date, rely on the construction of suffix arrays (see for example [90]), which
however require O(n log n) bits of space. Very recently, it has been shown that the space
requirements can be reduced to O(n log σ), while maintaining the optimal construction
time O(n) [4, 6, 82]. Despite compact space being asymptotically optimal in the uncom-
pressed domain, the hidden constant in practice could be high and makes this kind of
algorithms impractical, especially for large texts (e.g. big genomes). This problem moti-
vates the search for more space-efficient algorithms, being able either to work in external
memory or to exploit the compressibility of the text in order to reduce RAM requirements.
External and semi-external solutions on genomic data include [8], which requires about 1
byte in RAM per input symbol and works in linear-time, and [119], which requires about



60 3. Computing the BWT in Compressed Working Space

2 bits per input symbol in RAM and works in O(n log2 log n) average time. Of particu-
lar interest is the more general implementation described by Ferragina et al. [29], which
requires a constant (i.e. text independent) amount of RAM working space. Building a
compressed BWT is another common solution in order to save working space. Usually,
this is done by backward-inserting text characters in a compressed dynamic string data
structure with the algorithm described in Section 2.5. In [87], the authors follow this
approach and show that the BWT can be constructed in nHk + O(σ log n) + o(n log σ)
bits of space and O (n log n/log logn) worst-case time. Table 3.1 summarizes the above
discussed results, comparing them with the bounds described in this chapter.

Space avg-case time worst-case time ref
O(n log n) - O(n) [90]
O(n log σ) - O(n) [4]

nHk +O(σ log n) + o(n log σ) - O(n log n/ log log n) [87]

n(Hk + 1)(1 + o(1)) +O(σ log n) O(n(Hk + 1)) O
(
n(Hk + 1)(log n/ log log n)2

)
3.2

O(r) words - O(n log r) 3.3

Table 3.1: Comparison among some of the most interesting space-time tradeoffs presented in the
literature. If not specified, space is measured in bits.

3.2 High-Order Compressed Working Space

The content of this section is taken from paper (i). Our algorithm relies on the fact
that BWT characters can be partitioned in contexts. On the grounds of this observation
we generalize the classic backward insertion algorithm to work with multiple dynamic
strings (one per context), instead of only one for the whole BWT. The classic algorithm
becomes, then, a particular case of ours when the context length k is 0. This strategy
reduces considerably the average size of internal data structures, thus leading to better
performance. We call our algorithm cw-bwt (context-wise BWT). In this section we prove
the following:

Theorem 15. We can build the BWT of a length-n text in average O(n(Hk + 1)) time
using n(Hk + 1)(1 + o(1)) +O(σ log n) bits of space, where k = logσ(n/ log2 n)− 1

In the worst case, our structure is slower by a factor of (log n/ log logn)2; as we show
in Chapter 7, however, practical texts behave nearly-uniformly with our structures as
our algorithm runs in average O((Hk + 1)) time per character on many texts of practical
interest.

In Figure 3.1 we contextualize Theorem 15 in our framework of algorithmic tools
(Figure 1.1).

3.2.1 Data Structures

We remind the reader that the Burrows-Wheeler transform of T$ can be obtained by
sorting all circular permutations of T$, representing them in “conceptual” matrix M (see
Table 3.2), and then taking the last column Mn = L of M (the first column will be
denoted M0 = F ), where M i, 0 ≤ i ≤ n is the i-th column of M . Notice that length-k



3.2. High-Order Compressed Working Space 61

T LZ77(T) slz-rlbwt

Hk-BWT(T) RLBWT(T) s-rlbwt

|LZ77(T )|+
|RLBWT (T )| |RLBWT (T )|

|T |Hk(T ) |RLBWT (T )|

|T |H0(T )

|T |Hk(T )

|LZ77(T )|+
|RLBWT (T )|

|RLBWT (T )| + |T |/d

cw-bwt algorithm

1

Figure 3.1: Our cw-bwt algorithm builds a high-order compressed BWT

contexts appear lexicographically sorted in the first k columns of M , and thus they induce
a partition of the BWT rows (as depicted in Table 3.2).

$ m i s s i s s i p p i
i $ m i s s i s s i p p
i p p i $ m i s s i s s
i s s i p p i $ m i s s
i s s i s s i p p i $ m
m i s s i s s i p p i $
p i $ m i s s i s s i p
p p i $ m i s s i s s i
s i p p i $ m i s s i s
s i s s i p p i $ m i s
s s i p p i $ m i s s i
s s i s s i p p i $ m i

Table 3.2: Conceptual BWT matrix M of the text mississippi$. Last column is the BWT
(ipssm$pissii). There are 9 different contexts of length k = 2, corresponding to a partitioning of
the BWT in 9 substrings. With our strategy, we will keep one dynamic string data structure for
each of these substrings.

We remind also that a fundamental property of the BWT matrix is the LF property :
the i-th occurrence of c (c ∈ Σ∪{$}) in the last column corresponds to the i-th occurrence
of c in the first column (i.e. they represent the same text position). This property can be
generalized. Given a h-context s ∈ (Σ ∪ {$})h, for some h, let Cs(M i) be the class of the
partition of M i induced by s, i.e. the substring M i[l, . . . , r] such that all and only BWT
rows l, . . . , r are prefixed by s.

Lemma 1. (Context-wise LF property) If T [j] is i-th occurrence of c in Cs(L), then T [j]



62 3. Computing the BWT in Compressed Working Space

is the i-th occurrence of c in Ccs(F ).

The classical LF -property is the special case for h = 0 of the context-wise LF property.
Our main structure will be, essentially, a de Bruijn automaton: a labeled subgraph of a de
Bruijn graph [24], having k-contexts as states. For each automaton’s state s we will store
a compressed dynamic string encoding the class Cs(L) and a partial sum data structure
encoding the class Cs(Mk). These data structures will be better specified below. Then, the
main algorithm will proceed by reading text’s characters (right to left) while navigating
automaton’s states and updating the corresponding dynamic strings and partial sums
structures. Correctness follows from Lemma 1. Figure 3.2 depicts the data structures
used in our algorithm.

M0..Mk−1 Mk Unknown L

$$ m ississipp i

i$ $ mississip p

ip p i$$missis s

is s ippi$$mis s

is s issippi$$ m

mi s sissippi$ $
pi $ $mississi p

pp i $$mississ i

si p pi$$missi s

si s sippi$$mi s

ss i ppi$$miss i

ss i ssippi$$m i

︷ ︸︸ ︷ ︷︸︸︷ ︷︸︸︷A PS DS
A = Automaton (topology)
PS = partial sums (one per state)
DS = 0-th order compressed dynamic

strings (one per state)

$$

i$

mi

pi

si

is

ss

ip

pp

start

i

m
p

s

i

s

i

p
p

is

i s p

s

m

Figure 3.2: Data structures used in the cw-bwt algorithm. A de Bruijn automaton is used to
navigate BWT contexts. Every automaton state w ∈ Σk (i.e. a k-mer) is associated with a partial
sum structure PS memorizing the substring Cw(Mk) of the k-th BWT column, and with a 0-th
order compressed dynamic string memorizing the BWT substring Cw(L).

de Bruijn Automata

With the term de Bruijn automaton we indicate a labeled subgraph of a de Bruijn
graph [24], having k-mers appearing in T$k as nodes. More in detail, our de Bruijn
automaton is A = 〈Q,Σ, δ, $k〉, where Q = {q | q is a k-mer in T$k} is the set of states, Σ
is the set of input symbols, δ : Q×Σ→ Q is the transition function defined as δ(u, c) = v
if and only if v = cu[0, ..., k−2], and $k is the start state. Accepting states are not relevant
for our application, so we omit them. Using array indexes as k-digit integers in base σ, the
representation of the automaton will turn out to be implicit in our data structures. This
choice gives the additional benefit that automaton’s states can be visited in lexicographic
order without overhead, a feature that we will use in our algorithm.

In order to refer to the structures associated to each automaton state, we will use
the following notation. Each automaton’s state s ∈ Q will carry a dynamic string de-



3.2. High-Order Compressed Working Space 63

noted with A[s].DS and a partial sum data structure denoted with A[s].PS. The func-
tion A.GOTO(s, c) ∈ Q, s ∈ Q, c ∈ Σ, encodes the automaton’s transition function:
A.GOTO(s, c) = δ(s, c).

Succinct Dynamic Bitvectors

The problem of designing a lightweight bitvector offering efficient query and update op-
erations has been extensively discussed in the literature [45, 49, 87, 88]. Let u be the
bitvector length. Given the lower bound Ω (log u/log log u) on the maximum of update
and queries [40] and the most recent optimal-time and compressed O(uH0) space solu-
tions [87,88], this problem can be considered essentially solved for a general bitvector size
u. However, under the word RAM model with word size w, better solutions can be found
for a small enough bitvector size u (e.g. u ∈ O(poly(w))). In the following we assume
the maximum bitvector length u is known a priori (so that the size log u of the counters
we use does not change with time). This will be our case, as this value will be known at
bitvector construction time.

The core of our bitvector data structure is a packed B-tree. Each leaf of the tree stores
W = p · w bits, for a suitable integer p > 0. Note that, within W bits, we can pack
d = bW/ log uc counters of log u-bits each. We use d as the maximum number of children
per internal node. At this point, we assign to each internal node 3pw = 3W bits and
we store, for each node’s children, one rank counter (number of bits set), one size counter
(number of bits), and a pointer to the children. Note that d could be asymptotically larger
than the number O(p) of words in each node; however, by using standard bit-parallelism
techniques (typically employed in packed B-trees), we will spend only O(p) time per node
during tree navigation (essentially, bit-parallelism techniques allow us to perform constant-
time additions and subtractions between all integers packed in two words). With h we
denote the height of the tree. Access and rank operations are implemented in O(h · p)
time: size counters guide the search from the root to the leaves, and rank counters give
partial rank information (of the subtrees) while searching the leaf (O(p) operations for
each node on the path). The main novelty resides in the insertion algorithm, which is
studied to maximize leaf usage and minimize expensive re-arrangement operations. While
inserting a bit, if a leaf/node is not full, then we simply insert the bit/key in the right
place, updating accordingly the counters. If a leaf/node is full, 4 cases can appear. Let
b =
√
d. If a leaf is full, then we count the number m of bits in b adjacent leaves, including

the current full leaf (apart from being adjacent, the way leaves are chosen is not relevant
for the analysis). If m > b(W − b), then we create a new leaf and redistribute uniformly
the m bits in the resulting b+ 1 leaves. If m ≤ b(W − b), then we redistribute uniformly
the m bits among the b leaves without creating a new one. If an internal node is full,
then we choose b adjacent nodes (included the current full node) and we count the total
number m of children. If bm/(b + 1)c ≥ b, then we create a new internal adjacent node
and we uniformly redistribute the children in the resulting b+1 nodes. If bm/(b+1)c < b,
then we uniformly redistribute the children among the b adjacent nodes. All the above
redistributions can be implemented in O(p · b) time using shifts and masks. In all 4 the
cases, it can be easily shown that after a redistribution the number of free bits/positions
in the manipulated leaves/nodes is always Ω(b): as a consequence, if a redistribution takes
place, then at least b “easy” (O(h·p) time) insertions have been made beforehand, resulting
in O(h ·p) amortized cost for the insertion. Due to the internal node redistribution policy,



64 3. Computing the BWT in Compressed Working Space

the minimum number of children per node is b. It follows that the height of the tree is
h ∈ O(logb(u)). In order to keep the space always succinct, we choose p = log u/ logw.
We obtain d = O(w/ logw) and b = O(

√
w/ logw). The minimum number of used bits

per leaf is (following the redistribution policy) b(W − b)/(b + 1). From this fact, it can
be shown that the maximum overhead (total number of bits allocated in the leaves but
not used) is of O(u/b) bits. Moreover, the maximum number of leaves is nL ∈ O(u/W ),
thus the maximum number of internal nodes is (nL− 1)/(b− 1) ∈ O(nL/b) = O(u/(bW )),
totalling W · O(u/(bW )) = O(u/b) bits of space occupancy for the internal nodes. The
extra space required by the tree is thus o(u), so the whole structure occupies u + o(u)
bits of space. Finally, from the particular value chosen for p, it can be easily shown (see
above) that all operations have cost O(h · p) = O((logw u)2) (in the amortized sense for
insertion). This cost is O(1) or O((w/ logw)2) if the bitvector size is u ∈ O(poly(w)) or
u ∈ O(2w), respectively.

Compressed Dynamic Strings

Given the bitvector data structure discussed above, a generalization to dynamic strings
can be easily made using wavelet trees (see Section 2.3.2 and [84] for a complete survey on
the subject). Assuming that the frequency of each character to be inserted in the string
is known beforehand, we implement this structure using a Huffman-shaped wavelet tree.
Huffman encoding requires, on average, at most H0 + 1 bits per symbol. The total space
of the structure is bounded by n(H0 + 1)(1 +o(1)) +O(σ log n) bits [51,84], where the last
term comes from the codebook. Queries and update operations are supported in average
O(H0+1) or O((H0+1)(w/ logw)2) time if the string size is u ∈ O(poly(w)) or u ∈ O(2w),
respectively.

Partial Sums

Our algorithm will require, for each automaton’s state s, one partial sum structure of
length σ encoding the class Cs(Mk). A partial sum data structure PS of length j is a
list of values PS[0], ..., PS[j − 1] offering efficient partial sum and update queries. With
PS.sum(i) we will denote the quantity

∑i−1
k=0 PS[k], and PS.increment(i) will denote the

operation PS[i]← PS[i] + 1.

Efficient solutions offering optimal worst-case space and time bounds, appeared in the
literature [104]. See also Sections 3.3.1 and 6.2 for another partial sum structure with
different space-time bounds. For self-containedness, here we describe a simple structure
based on packed B-trees supporting constant-time operations for the particular case where
σ ∈ O(poly(w)). The main idea is to use a packed B-tree to store temporary partial sums
information, plus an array S[0, ..., σ − 1] initialized at S[i] = 0, 0 ≤ i < σ. The packed
B-tree has σ leaves (each storing a counter) and internal nodes store the partial sums of
the corresponding subtrees. Each counter in the tree is composed by log σ = O(log(w))
bits, so the height of the tree is logw/ logw σ ∈ O(logw/ logw poly(w)) = O(1). Updates
are implemented as follows. When incrementing a counter (i.e. PS.increment(i)), the
packed B-tree is updated accordingly (i.e. by incrementing counters from the i-th leaf up
to the root). At steps of σ increment operations, S[i] is incremented with the content
of the i-th leaf (0 ≤ i < σ) of the packed B-tree, and the tree is re-initialized (i.e. each
counter is reset to 0). Since a single update on the packed B-tree takes constant time and



3.2. High-Order Compressed Working Space 65

the tree is re-built every σ operations, updates on the whole structure PS take constant
amortized time. Finally, a query PS.sum(i) is implemented in O(1) time by returning the
sum between S[i] and the i-th partial sum stored in the packed B-tree. Given that each
counter will store a number less than or equal to n (the text length), the described data
structure occupies O(σ log n) bits of space.

3.2.2 Cw-bwt Algorithm

Here we describe how to improve the BWT construction algorithm described in Section
2.5 by allowing it to work context-wise. We name our algorithm cw-bwt.

First of all notice that, since we partition the BWT using length-k contexts and each
partition is Huffman-compressed, as a by-product we obtain that, overall, the dynamic
string data structures require globally n(Hk + 1)(1 + o(1)) bits of space in memory [80]
(excluding codebooks sizes, see below). The number of states of the automaton is bounded
by |Q| ≤ σk+k ∈ O(σk). For each automaton state we store a partial sum data structure of
size O(σ log n) bits. This is, asymptotically, the same space required to store a codebook.
The choice k = logσ

(
n/σ log2 n

)
= logσ(n/ log2 n) − 1 results in a total space occupancy

of all the above discussed structures of O(σ log n)O(σk) = O
(
σ log n · n/(σ log2 n)

)
=

O(n/ log n) = o(n) bits. Note that, for big alphabets, the formula we used for k yields
k = 0; in this case, it is not true that O(σ log n)O(σk) = o(n) (i.e. O(σ log n) gets absorbed
in o(n) only if logσ(n/ log2 n) ≥ 1). We therefore need to account also for an additional
O(σ log n)-bits overhead to include also the big alphabet case. Summing up, the total
space occupancy of the cw-bwt algorithm is n(Hk + 1)(1 + o(1)) +O(σ log n) bits.

Our algorithm is reported as Algorithm 1. See below for a detailed discussion of the
pseudocode.

In line 3 the de Bruijn automaton is constructed and data structures are initialized.
As mentioned in Section 3.2.1, a simple direct-hashing strategy permits to perform the
automaton construction implicitly and with no overhead. The initialization of dynamic
string data structures requires the frequency of each character to be computed for each
class Cs(L) (for Huffman encoding). This step can be easily done in linear O(n) time and
O(σkσ log n) = o(n) bits of space using, again, direct hashing.

The for loop in line 6 scans backwards all text characters, starting from the rightmost.
Variables head and tail at lines 7 and 8 store the current text character and the rightmost
symbol of the current context, respectively. t is the position where head has to be inserted
in the current state. The new automaton state s′ is computed (line 9) by appending
head at the beginning of the current state and by removing tail from its rightmost end.
The subsequent 4 lines represent the core of our algorithm. First of all, the current text
character head = T [i] is inserted at position t in the dynamic string associated with the
class Cs(L) (line 10). In the BWT matrix, this operation corresponds to the substitution of
the terminator $ character with head (notice that $ is not explicitly inserted at each step:
we just remember its coordinates 〈s, t〉). The next operations correspond to the insertion
in the BWT matrix of the current text suffix Ti, having as prefix head · s = s′ · tail and
ending with $. Since we will need information about the first k + 1 columns of M (see
Lemma 1), we need to keep track of the fact that in Cs′(Mk) a new symbol tail has been
added. Since symbols in Cs′(Mk) appear in lexicographic order, this task is accomplished
simply by incrementing a partial sum counter (line 11). In line 12 the new position
of $ in Cs′(L) is computed (remember that $ is not explicitly inserted). The operation



66 3. Computing the BWT in Compressed Working Space

Algorithm 12: cw-bwt(T )

input : Text T ∈ Σn, without terminator appended at the end.
output: BWT of T$.

1 n← |T |;
2 k ← max(dlogσ(n/ log2 n)− 1e, 0); /* optimal k */

3 A ← init automaton(T, k); /* init automaton and data structures */

4 s← $k; /* current state */

5 t← 0; /* position of the insertion in current state */

6 for i = n− 1 downto 0 do

7 head← T [i]; /* symbol entering in the context */

8 tail← s[k − 1]; /* symbol exiting from the context */

9 s′ ← A.GOTO(s, head); /* next state */

10 A[s].DS.insert(head, t); /* insert current character */

11 A[s′].PS.increment(tail); /* update partial sums */

12 t← A[s′].PS.sum(tail) +A[s].DS.rank(head, t); /* update t */

13 s← s′; /* update state */

14 A[s].DS.insert($, t); /* insert terminator */

15 BWT ← ε; /* the BWT of T$ */

16 for s ∈ Q in lexicographic order do
17 BWT.append(A[s].DS); /* append dynamic strings to BWT */

18 return BWT ;

A[s].DS.rank(head, t) returns the number of characters equal to head before the position
that contained $. Since we are computing this value in Cs(L), this is the number of text
suffixes starting with head · s and lexicographically smaller than the current text suffix
Ti. Lemma 1 implies that, in order to compute the new position of $ in Cs′(L) (i.e. the
lexicographic position of the new text suffix in the BWT matrix), we need to add to this
value the number of characters smaller than tail in Cs′(Mk), i.e. A[s′].PS.sum(tail) (line
12).

As mentioned above, we never explicitly insert the terminator character $ during con-
struction. For this reason, at the end of the first for loop, $ is explicitly inserted (line 14).
Finally, the for loop at line 16 scans lexicographically the automaton states in order to re-
construct the BWT in the correct order. Notice that states can be scanned in lexicographic
order with no overhead if the automaton has been implemented using direct hashing, as
described in Section 3.2.1. Moreover, in this step the BWT can be stored directly to disk,
for no additional RAM consumption. The operation BWT.append(A[s].DS) at line 17
is implemented by appending the characters of A[s].DS one by one to the string BWT
(|A[s].DS| access operations).



3.3. Run-Length Compressed Working Space 67

Time Complexity

The most expensive operations in the for loops are those at lines 10, 12, and 17 (in-
sert, rank, and access, respectively). All other operations have cost O(1) (see Section
3.2.1). Assuming a uniform text distribution, the expected length of each dynamic string
is O(n/σk) = O(σ log2 n). This value, under the other two assumptions σ ∈ O(poly(w))
and w ∈ Θ(log n), is equal to O(polylog(n)) = O(poly(w)). These observations imply that
the amortized cost of queries/updates on the dynamic strings is of O(Hk + 1). Theorem
15 follows.

The worst case scenario, on the other hand, is represented by a highly repetitive
text T in which one or more k-contexts appear Θ(n) times. This results in the length
of the corresponding dynamic strings being Θ(n) = Θ(2w), thus (see Section 3.2.1) in
O((Hk + 1)(log n/ log log n)2) cost for queries/updates. The following holds:

Theorem 16. The cw-bwt algorithm builds the BWT of a length n text in worst-case time
O(n(Hk + 1)(log n/ log log n)2) using n(Hk + 1)(1 + o(1)) +O(σ log n) bits of space, where
k = logσ(n/ log2 n)− 1

Implementation

We implemented cw-bwt in two versions: the first, available in the BWTIL library [96],
uses the succinct bitvector implemented by Nicola Gigante [42]. This bitvector is a direct
implementation of the structure described in Section 3.2.1, and guarantees constant-time
operations on bit sequences of size wO(1). The resulting cw-bwt implementation runs in
O((Hk + 1)) time per character under the assumption of near-uniform text distribution
(Theorem 15). See Chapter 7 for an experimental demonstration of this statement. The
second cw-bwt version we implemented uses a simpler bitvector supporting logarithmic
queries and can be found in the DYNAMIC library [97]. On moderately big inputs, this
version runs faster than the first one. See Section 6.4.2 for a description and theoretical
analysis of this alternative implementation, and Chapter 7 for its experimental evaluation.

3.3 Run-Length Compressed Working Space

The generality of the online BWT construction algorithm described in Section 2.5 leaves
full freedom in the choice of the data structure/compression scheme used to represent
the dynamic BWT. In this section, we focus on run-length encoding. We first describe
a reduction from the dynamic gap-encoded bitvector problem to the Searchable Partial
Sums with inserts (SPSI) problem (see below for a definition). This structure can be
plugged in the run-length dynamic string of Section 2.3.3. By plugging this run-length
string in the algorithm of Section 2.5, we will obtain an algorithm to build the BWT in
space proportional to the number r of its equal-letter runs. This data structure will be
used in Section 4.3 in order to compute the LZ77 parsing in O(r) words of space.

In Figure 3.3 we contextualize the result presented in this section in our framework of
algorithmic tools (Figure 1.1).



68 3. Computing the BWT in Compressed Working Space

T LZ77(T) slz-rlbwt

Hk-BWT(T) RLBWT(T) s-rlbwt

|LZ77(T )|+
|RLBWT (T )| |RLBWT (T )|

|T |Hk(T ) |RLBWT (T )|

|T |H0(T )

|T |Hk(T )

|LZ77(T )|+
|RLBWT (T )|

|RLBWT (T )| + |T |/d

rle-bwt algorithm

1

Figure 3.3: Our rle-bwt algorithm builds a run-length compressed BWT

3.3.1 The Searchable Partial Sums with Indels Problem

We start by describing a simple and self-contained compact-space solution to the Search-
able Partial Sums with Indels (SPSI) problem. The SPSI asks for a data structure PS
to maintain a sequence s1, . . . , sm of non-negative k-bits integers supporting the following
operations:

• PS.sum(i) =
∑i

j=1 sj ;

• PS.search(x) is the smallest i such that
∑i

j=1 sj > x;

• PS.update(i, δ): update si to si + δ. δ can be negative as long as si + δ ≥ 0;

• PS.insert(i): insert 0 between si−1 and si (if i = 0, insert in first position).

We will not need delete operations, so we do not consider them here. Here we describe
a simple solution taking O(m) words of space. In Section 6.2 we will describe a more
space-efficient and practical solution that has been implemented in our DYNAMIC C++
library.

The main idea is to employ red-black trees (RBT) to represent the dynamic sequence
of integers. We store s1, . . . , sm in the leaves of a RBT and we store in each internal node
of the tree the number of nodes and partial sum of its subtrees. sum and search queries
can then be implemented with a traversal of the tree from the root to the target leaf.
update queries require finding the integer (leaf) of interest and then updating O(logm)
partial sums while climbing the tree from the leaf to the root. Finally, insert queries
require finding an integer (leaf) si immediately preceding or following the insert position,
substituting it with an internal node with two children leaves si and 0 (the order depending
on the insert position—before or after si), incrementing by one O(logm) subtree-size
counters while climbing the tree up to the root, and applying the RBT update rules. This



3.3. Run-Length Compressed Working Space 69

last step requires the modification of O(logm) counters (subtree-size/partial sum) if RBT
rotations are involved. All operations take O(logm) time.

3.3.2 Dynamic Gap-Encoded Bitvectors

Hence, a length-n bitvector B = 0s1−110s2−11 . . . 0sm−11 (si > 0) can be encoded in
O(m) words of space with a partial sum PS on the sequence s1, . . . , sm. See [88] for
a similar reduction. We need to show how to answer the following queries on B: B[i]
(access), B.rank1(i), B.select1(i), B.insertb(i) (insert bit b ∈ {0, 1} between posi-
tions i − 1 and i), and B.delete0(i), where B[i] = 0 (delete B[i]). It is easy to see
that rank1, access and select1 operations on B reduce to access, search, and sum

operations on PS, respectively. B.delete0(i) requires just a search and an update on
PS (decrementing by one a counter). To support insert on B, we can operate as fol-
lows: B.insert0(i), i > 0 requires incrementing by one a counter and is implemented
as PS.update(PS.search(i), 1). B.insert1(0) is implemented with PS.insert(0) fol-
lowed by PS.update(0, 1). B.insert1(i), i > 0, “splits” an integer into two integers:
let j = PS.search(i) and δ = PS.sum(j)− i. We first decrease sj with PS.update(j,−δ).
Then, we insert a new integer δ + 1 with PS.insert(j + 1) and PS.update(j + 1, δ + 1).
All operations are supported in O(logm) time.

3.3.3 A Dynamic Run-Length BWT

Let S ∈ Σn. To implement the run-length string RLE(S) of Section 2.3.3, we combine the
above-described dynamic gap-encoded bitvector with a dynamic string to encode compo-
nent H (i.e. run heads). For H we can use the result in [87], guaranteeing O(rS) words
of space. Note that in Navarro’s work [87] there is an extra O(σ log rS) bits spatial term
amounting, in our case, to O(rS) words, since σ ≤ rS ≤ n. This structure supports
O(log rS)-time rank, select, access, and insert. Note that this is not the strategy that
has been implemented in practice in our library: in Section 6.3.2 we represent H with a
wavelet tree built upon dynamic succinct bitvectors. We obtain:

Lemma 2. Our dynamic run-length string RLE(S) takes O(rS) words of space and sup-
ports rank, access, and insert operations on S in O(log rS) time.

By combining the result of Lemma 2 with the algorithm described in Section 2.5, we
obtain:

Theorem 17. There exists a data structure representing BWT (S) in O(r) words of space
and supporting text left-extension (i.e. update the structure to represent BWT(cS)) in
O(log r) time.

Theorem 17 directly implies that we can build BWT (
←−
S ) online in O(r) words of

working space and O(n log r) time. Applying the reasoning made at the beginning of this
chapter, we obtain:

Theorem 18. We can build BWT (S) with an algorithm running in O(n log r) time and
using O(r) words of working space.



70 3. Computing the BWT in Compressed Working Space

Implementation

The algorithm described in this section has been implemented in our DYNAMIC library,
where it takes the name rle-bwt. See Section 6.4.2 for a description and theoretical
analysis of the implementation. See Chapter 7 for an experimental evaluation of rle-bwt.



4
Computing LZ77 in Compressed

Working Space

The Lempel-Ziv factorization LZ77 (Definition 2) is an important tool in text compression,
being its size z closely related with the number of repetitions in the processed string.
Moreover, by augmenting it with additional (proportional-size) structures, one can obtain
fast and high-order compressed full-text indexes [66, 67]. Structures based on LZ77 have
been shown to be competitive in terms of space on repetitive text collections with respect
to BWT-based self indexes [16,67], and a careful combination of the two techniques stands
at the basis of some of the most time-and-space efficient repetition-aware indexes [5].

4.1 Related Work

The Lempel-Ziv factorization can be computed in linear time and O(n log n) bits of work-
ing space by using suffix trees or suffix arrays [22, 23, 58]. Recent results—building up
on the FM index [33] data structure—reduced space to compact (O(n log σ) bits), while
retaining linear running time [82]. The best space bound to date is achieved by the algo-
rithm discussed in Kreft’s thesis [65], which builds the LZ77 factorization of the text in
O(n log1+ε n) time (ε > 0) and n(Hk + 2) + o(n log σ) bits of space (although the O(n)
term prevents space from being fully compressed).

A line of this research is focused on the online computation of the LZ factorization.
Okanohara et al. [93] showed that this task can be carried out in O(n log3 n) time using
only (1+o(1))n log σ+O(n) bits of working space. Starikovskaya [114] reduced the running
time to O(n log2 n), while slightly increasing the working space to O(n log σ) bits. Finally,
Yamamoto et al. [122] obtained O(n log n) running time within O(n log σ) bits of working
space by using Directed Acyclic Word Graphs (DAWGs). Our first result (Section 4.2) is
an online algorithm computing LZ77 in O(n log n) time and zero-order compressed space,
therefore improving upon all above solutions.

After presenting this result, we focus on run-length compression. While fixed-order
statistical methods are not able to capture long repetitions [41], techniques such as LZ77,
grammar compression [13], and run-length encoding of the Burrows-Wheeler transform [77,
111] have been shown superior in the task of compressing highly repetitive texts. In
these domains, algorithms working in space Θ(n log n) [22], O(n log σ) [7, 91], or even
O(nHk) [67] bits are of little use as they could be much more memory-demanding than the
final compressed representation. Very recent results suggested that it is possible to achieve
these goals in repetition-aware working space. Fischer et al. [39] proposed a randomized



72 4. Computing LZ77 in Compressed Working Space

algorithm to compute in O(ε−1n log n) time and O(z) words of space an approximation of
the parsing consisting of at most (1 + ε)z phrases, where 0 < ε ≤ 1. Nishimoto et al. [89]
show how to build the LZ77 parsing in O(z log n log∗ n) words of space. In Section 4.3
we present two algorithms computing LZ77 in O(n log r) time and space proportional (in
words) to r (i.e. the number of runs in the Burrows-Wheeler transform of the text). All
algorithms presented in this chapter have been implemented in our library DYNAMIC. See
Chapter 7 for an experimental evaluation of our solutions.

To sum up, in this chapter we present algorithms computing LZ77 within the following
time/space bounds:

• O(n log n) time and nH0 +o(n log σ)+O(σ log n) bits of working space (Section 4.2)

• O(n log r) time and O(r) words of working space (Section 4.3)

The basic structure we use is a (entropy/run-length compressed) dynamic FM index
over the reversed text, updated by inserting T -characters from the first to the last.

4.2 Zero-Order Compressed Working Space

In this section we prove the following theorem:

Theorem 19. The LZ77 factorization of a text T ∈ Σn can be built online in nH0 +
o(n log σ) +O(σ log n) bits of working space and O(n log n) time

The content of this Section is based on paper (ii). The core of our algorithm is
a zero-order compressed dynamic FM index. We start by presenting all employed data
structures, and then proceed by combining them in our final solution.

In Figure 4.1 we contextualize Theorem 19 in our framework of algorithmic tools
(Figure 1.1).

4.2.1 Data Structures

Our theoretical result builds upon a recent insight by Navarro and Nekrich on the optimal
representation of dynamic strings [87]: there exists a data structure that permits to repre-
sent a sequence S[0, n−1] over an alphabet Σ = {0, ..., σ−1} in nH0+o(n log σ)+O(σ log n)
bits of space and that supports queries (access, rank, select) and updates (insertions and
deletions) in O(log n/ log logn) time. The bound is worst-case for the queries and amor-
tized for the updates.

We use the optimal sequence representation of Navarro and Nekrich [87] to build
a dynamic FM index taking nH0 + o(n log σ) + O(σ log n) bits of space that supports
(amortized) O(log n/ log logn)-time left-extension of the text with an arbitrary character
and LF function computation, and O(log2 n/ log σ)-time locate. Note that this is not the
solution we adopt in practice in our implementation (where we use instead wavelet trees
built upon dynamic bitvectors), see Section 6.4.3 for full details. Our algorithm scans
the text from its first to last character, building the dynamic FM index of the reversed
text. At each step (i.e. text character), we (1) update the BWT interval of the current
LZ phrase and (2) insert a new text character in the index. Each time the BWT interval
becomes empty, we have reached the end of the current LZ phrase and we use a locate
query to compute the LZ-factor.



4.2. Zero-Order Compressed Working Space 73

T LZ77(T) slz-rlbwt

Hk-BWT(T) RLBWT(T) s-rlbwt

|LZ77(T )|+
|RLBWT (T )| |RLBWT (T )|

|T |Hk(T ) |RLBWT (T )|

|T |H0(T )

|T |Hk(T )

|LZ77(T )|+
|RLBWT (T )|

|RLBWT (T )| + |T |/d

h0-lz77 algorithm

1

Figure 4.1: Our h0-lz77 algorithm builds online the Lempel-Ziv parsing using zero-order com-
pressed working space

Dynamic FM Index The principal component of our dynamic FM index is a dynamic
BWT, updated with the algorithm described in Section 2.5. Dynamic FM indexes were
firstly described by Chan et al. [12] and by Mäkinen and Navarro [76]. Our dynamic FM
index differs from these proposals in that we also compress the bitvector marking sampled
BWT positions, therefore achieving overall compressed working space (whereas the MARK

structure of [12] requires O(n) bits of space). For completeness, in this section we describe
all details of this dynamic index. We use two different terminator symbols—# ∈ Σ and
$ /∈ Σ—to mark the end of the forward (LZ77 algorithm) and reverse (BWT algorithm)
text, respectively. Our algorithm will therefore work on texts of the form $W#, W ∈ Σ∗.

In our algorithm, we index the sequence S =
←−
T $. By using the dynamic sequence

representation of Navarro and Nekrich [87], we can build BWT (
←−
T $) online in overall

O(n log n/ log log n) time and nH0 + o(n log σ) + O(σ log n) bits of space by inserting
characters in the order $, T [0], ..., T [n − 1] with the procedure of Section 2.5. In the
following paragraphs, we will denote with BWT the Burrows-Wheeler transform of the

current suffix of S =
←−
T $.

The second ingredient we need in order to compute the LZ77 factorization of T is a
dynamic suffix array sampling to support fast locate. The main challenge is to add such
functionality without asymptotically increasing space usage. Let γ > 0 be the sample rate,
and m = dn/γe be the number of stored suffix array pointers. To this end, we employ two
structures:

1. A compressed dynamic bitvector B to mark with a “1” sampled F -positions.

2. A dynamic sequence representation SA[0,m− 1] over the alphabet [0, n− 1] taking
compact space (O(m log n) bits) and supporting O(log n)-time access and insert
operations.

We use a sample rate of γ = logσ n log logn. For component (1), we use again the



74 4. Computing LZ77 in Compressed Working Space

dynamic sequence representation of Navarro and Nekrich. We remind the reader that the
size of a zero-order compressed bitvector B′ with b bits set is nH0(B′) ≤ b log(n/b)+b log e.
Since B has m = dn/γe = d n

logσ n log logne bits set, it follows easily that B takes overall

nH0(B) + o(n) +O(log n) = o(n) bits of space.
For component (2), we use a simple balanced tree (e.g. a red-black tree or a B-tree

with constant fanout) where we store suffix array samples in the leaves and we augment
each internal node with the size of the corresponding subtree. Access and insert in posi-
tion i are then implemented by descending the tree according to the subtree-size counters,
accessing/inserting the suffix array pointer in the leaves, and (in the case of insert) up-
dating O(logm) subtree-size counters. The tree takes overall O(m log n) = o(n log σ) bits
of space, and access/insert operations take O(logm) = O(log n) time. Structures B and
SA take overall o(n log σ) bits of space.

Implementing extend With BWT.extend(c) ∈ {0, ..., |BWT |}, c ∈ Σ ∪ {$}, we will
denote the function that:

1. updates the BWT of the current S suffix by left-extending it with a new character c

2. updates the suffix array samples, and

3. returns the L-position of character $ after the left-extension has taken place.

To avoid updating the already inserted suffix array pointers at each text extension, in
structure SA we enumerate S-positions starting from the last. In this sense, S[n] = $
corresponds to SA-position 0, and S[0] corresponds to SA-position n (remember that

|S| = |←−T $| = n+ 1). Suppose we have built the structures for the length-(i− 1) suffix of
S and that we want to left-extend it with the new character S[n − i + 1]. Let j be such
that BWT [j] = $, r = BWT.rank(S[n − i + 1], j), and k = BWT.F (S[n − i + 1]) + r.
Operation BWT.extend(S[n− i+ 1]) is implemented as follows:

1. We update BWT with the new text character S[n − i + 1] as described in Section
2.5

2. If i mod γ = 0, then we insert a new suffix array pointer in SA and mark with a “1”
the corresponding F -position in B: SA.insert(i−1, B.rank(1, k)) and B.insert(1, k)

3. Otherwise (i mod γ 6= 0), we mark with a “0” the new suffix F -position in B:
B.insert(0, k)

Step (1) takes O(log n/ log logn) amortized time. The insertion of a bit in B takes
O(log n/ log logn) time, and the insertion of a suffix array pointer in SA takes O(log n)
time. Since we update SA every logσ n log logn left-extensions, extend takes overall
O(log n/ log logn) amortized time.

Implementing locate Let BWT be the Burrows-Wheeler transform of the current S
suffix. Operation BWT.locate(i) returns the S-position (enumerated from right to left)
corresponding to the F -position i. We implement this operation as usual, i.e. by backward-
navigating the current S suffix until a sampled F -position or the first suffix position is
found:



4.2. Zero-Order Compressed Working Space 75

1. If i is such that BWT [i] =′ $′, then we return |BWT | − 1.

2. Otherwise:

(a) If B[i] = 1, then we return SA[B.rank(1, i)].

(b) If B[i] = 0, then we return BWT.locate(i′) − 1, where i′ = BWT.F (c) +
BWT.rank(c, i) and c = BWT [i].

Since we use a sample rate of logσ n log logn and access and rank operations on BWT take
O(log n/ log log n) time, after O(log2 n/ log σ) time we find a marked F -position. Then,
extracting the suffix array pointer from structure SA takes O(log n) time. Since we assume
σ ≤ n, locate takes overall O(log2 n/ log σ) time.

Implementing LF Function The LF function requires a constant number of rank and
access operations on BWT , so it takes overall O(log n/ log logn) time.

4.2.2 The Algorithm

The extension step of our algorithm is described in Algorithm 13. The algorithm takes
as input one T character c, and outputs either the LZ factor ended by c or nothing if c
does not end a factor. In Algorithm 13, variables BWT (the dynamic BWT described
in section 4.2.1), [l, r] (BWT interval of the current phrase), len (length of the current
phrase), and i (L-position of character $) are global, and are initialized at the beginning
as BWT ←′ $′, [l, r]← [0, 0], len← 0, and i← 0.

First of all, in line 1 we perform one backward-search step using function LF. The
new BWT interval [l′, r′] is nonempty if and only if the current phrase Wc, W ∈ Σ∗,
does appear previously in the text. If this is the case (lines 16-19), then we increment
the current phrase length (line 17), left-extend the current S suffix (line 18), and update

the BWT interval of c
←−
W (line 19) by incrementing its right bound r′. This step is always

needed since in line 18 the new S suffix (prefixed by c
←−
W ) falls inside interval [l′, r′].

Otherwise, if Wc does not occur previously and len = |W | > 0 (lines 2-8), then Wc is

a new LZ factor and interval [l, r] holds all occurrences of
←−
W seen until now in the reversed

text. Notice, however, that [l, r] holds also the current occurrence of
←−
W (i.e. i ∈ [l, r)) in

addition to at least one previous occurrence (i.e. r− l ≥ 2). We must therefore be careful

to output a previous occurrence of
←−
W : in lines 4-8 we locate either l or r − 1, depending

on which one is different from i. Moreover, we must subtract len from the located text

position since locate returns an occurrence of
←−
W in the reversed text, and position 0 is

reserved for the terminator character $. After locating the occurrence, we can extend the
BWT with character c (line 12), reset the BWT interval to the full range [0, |BWT | − 1]
(line 13), reset phrase length to zero (line 14), and return the factor.

The last case to consider is when Wc does not occur previously and len = |W | = 0
(lines 9 and 10). Then, this is the first occurrence of c in the text and we simply output
a factor 〈null, 0, c〉 after extending the BWT with character c and resetting the global
variables as described above (lines 13-14).

From the analysis carried out in section 4.2.1 it is clear that, excluding locate, all steps
in Algorithm 13 take (amortized) O(log n/ log logn) time. Notice that we call locate once
per phrase. It is known that the number z of LZ77 phrases satisfies z ∈ O(n/ logσ n) [69].



76 4. Computing LZ77 in Compressed Working Space

Algorithm 13: add character(c)

input : Character c ∈ Σ (right-extending current T prefix)
output: A factor 〈pos, len, c〉 if c ends a factor. Nothing otherwise.

1 [l′, r′]← BWT.LF ([l, r], c); /* backward search step */

2 if l′ ≥ r′ then

3 if len > 0 then
4 if i = l then
5 occ← r − 1;

6 else
7 occ← l;

8 P ← BWT.locate(occ)− len; /* locate a previous occurrence */

9 else
10 P ← null; /* first occurrence of c */

11 L← len; /* length of current phrase (c excluded) */

12 BWT.extend(c); /* insert character c in the BWT */

13 [l, r]← [0, |BWT | − 1]; /* reset interval */

14 len← 0; /* reset phrase length */

15 return 〈P,L, c〉; /* return LZ factor */

16 else
17 len← len+ 1; /* increase current phrase length */

18 i← BWT.extend(c); /* insert character c in the BWT */

19 [l, r]← [l′, r′ + 1]; /* new suffix falls inside [l′, r′] */

Since the cost of a single locate query is O(log2 n/ log σ), in Algorithm 13 locate takes
O(log n) amortized time. As a result, by calling Algorithm 13 on T [0], ..., T [n−1], Theorem
19 follows: we can build the LZ77 factorization of T online in nH0 +o(n log σ)+O(σ log n)
bits of working space and O(n log n) time.

Notice that, if we wish to compute only the LZ phrase boundaries, then we do not
need locate, and the LZ factorization can be built using a simplified version of Algorithm
13 in O(n log n/ log logn) time.

Implementation

The algorithm described in this section has been implemented in our library DYNAMIC,
where it takes the name h0-lz77. See Section 6.4.3 for a description and theoretical
analysis of the implementation. See Chapter 7 for an experimental evaluation of h0-lz77.

4.3 Run-Length Compressed Working Space

While entropy compression works well for text with unbalanced character frequencies, it
is not able to exploit long repetitions. Run-length compression of the Burrows-Wheeler



4.3. Run-Length Compressed Working Space 77

transform is better suited for this task. In this section we show two algorithms building
LZ77 in only O(r) words of space. The content of this section is based on papers (iii) and
(iv). Note that papers (iii) and (iv) describe only offline solutions.

The main obstacle in building LZ77 within O(r) words of space with a run-length
encoded FM-index is the suffix array (SA) sampling: by sampling the SA every 0 < k ≤ n
text positions, this component takes O(n/k) words of space and supports locate queries
in time proportional to k. The main contributions of this section are two algorithms
that compute LZ77 by combining a (dynamic) run-length BWT with a repetition-aware
sparse suffix array sampling. The first algorithm stores only two samples per BWT equal-
letter run, while the second stores at most one sample per LZ77 factor. Both algorithms
run in O(n log r) time and require O(r) words of working space. We point out that—
unfortunately—the suffix array samplings we employ in our algorithms do not represent a
general sampling mechanism supporting the retrieval of all occurrences of a string, as they
only support the retrieval of at least one pattern occurrence. This is however sufficient for
locating LZ77 factors, so this strategy is suitable to solve the LZ77 factorization problem
in small space.

As a by-product of our results we obtain a O(r)-space algorithm to convert from
RLBWT- to LZ77-based compression formats (see Section 5.2.2 for full details). This is
one of the first works showing how to convert a compression format into another without
first decompressing the text; see [2, 3, 106] (grammar compression to/from Lempel-Ziv),
and [118] (run-length encoding of the text to LZ78) for similar results. Another important
application of our results is related to text indexing. In particular, we obtain that indexes
based on combinations of LZ77 and RLBWT compressors—see Section 5.3.3—can be built
in asymptotically optimal O(z+ r) words of working space. To the best of our knowledge,
the only other repetition-aware index that can be built in asymptotically optimal working
space is based on grammar compression and is described in [116].

4.3.1 First Algorithm: SA Sampling Based on BWT Runs

In this section we describe our first algorithm. The main data structures we use are a

dynamic RLBWT of the text
←−
T (i.e. RLBWT+(

←−
T )) and σ sets storing the suffix array

sampling. The algorithm works in two phases.

In the first phase, we read T from left to right, building RLBWT+(
←−
T ). This step

employs the online BWT construction algorithm described in Section 2.5, which requires
a dynamic string data structure D to represent the BWT. The algorithm performs a total
amount of |T | rank and insert operations on D. In our case, D will be designed to be
also run-length compressed: we represent it with the data structure described in Section
3.3.

In the second phase (Algorithm 15), we scan T left to right once more, this time

using the RLBWT just built—i.e. by repeatedly using the LF mapping on RLBWT+(
←−
T )

starting from T [0]— and output the LZ77 factors.
While reading T [j] for j > 0 in the second phase, we must determine whether T [i, . . . , j],

with i first position of the current LZ-phrase, occurs in T [0, . . . , j − 1]. If this is not the
case, then we output the LZ triple 〈π, j − i, T [j]〉, where π corresponds to the source of
the current LZ-phrase (and, hence, T [π, . . . , π + j − i− 1] = T [i, . . . , j − 1] and π = ⊥ in
case i = j). Note that the computation is performed on an index of the entire text (not
just of T [0, . . . , j]), thus we need to take special care to ensure that the occurrences of



78 4. Computing LZ77 in Compressed Working Space

T [i, . . . , j] we find are indeed previous occurrences. Informally, we need an index of the
entire text for the following reason. Our strategy will consist in maintaining this invariant:
we keep track, for each BWT run, of the two most external suffix array samples (i.e. text
positions) encountered while scanning the text left-to-right. Using an index for T [0, . . . , j]
only, we do not know whether an equal-letter run ak will later be split in two runs ak

′
cak

′′

(with k′ + k′′ = k and a 6= c). In such a case, we would have to sample the last and
first a’s of the two new runs ak

′
and ak

′′
, respectively, in order to preserve the validity

of our invariant. Sampling (i.e. mapping an L-position on the text) is an expensive task
as it requires navigating the BWT until a sample is found (O(n) backwards steps), so
this strategy is not feasible. Notice that keeping an index for the entire text solves this
problem as we already have access to all runs and therefore we know which L-positions,
among the ones we have already visited, are the most external in their run.

In the following we show how to implement our algorithm in O(r) words of working
space, by maintaining σ dynamic sets equipped with a total of O(r) SA-samples.

Dynamic Suffix Array Sampling

From now on BWT stands for BWT (
←−
T ). Note that, even though we say that we sample

the suffix array, we actually sample text positions associated with BWT positions, i.e. we
sample T -positions on the L-column instead of T -positions on the F -column of the BWT

matrix. Moreover, since we enumerate positions in T -order (not
←−
T -order), k-th BWT-

position will correspond to sample (n − SA[k]) mod n, where SA[k] is the k-th entry in

the (standard) suffix array of
←−
T .

Let j be a T -position and k its corresponding BWT-position: T [j] = BWT [k]. We
store SA-samples as pairs 〈j, k〉 and each pair is of one of three types: singleton, denoted

as 〈j, k〉◦, open, denoted as [〈j, k〉, and close, denoted as 〈j, k〉]. If the pair type is not
relevant for the discussion, we simply write 〈j, k〉.

Let Σ = {s1, . . . , sσ} be the alphabet. Samples are stored in σ red-black trees Bs1 , . . . ,Bsσ
and are ordered by BWT coordinate (i.e. the second component of the pairs). While read-
ing a = T [j] = BWT [k] we first locate the (inclusive) bounds l ≤ k ≤ r of its associated
BWT a-run, then we update the trees according to the following rules:

(A) If for all 〈j′, k′〉 ∈ Ba, k′ /∈ [l, r], then we insert the singleton 〈j, k〉◦ in Ba.

(B) If there exists 〈j′, k′〉◦ ∈ Ba such that k′ ∈ [l, r], then we remove it and:

(a) If k < k′, then we insert in Ba the pairs [〈j, k〉 and 〈j′, k′〉],
(b) If k′ < k, then we insert in Ba the pairs [〈j′, k′〉 and 〈j, k〉].

(C) If there exist [〈j′, k′〉, 〈j′′, k′′〉] ∈ Ba such that k′, k′′ ∈ [l, r]:

(a) If k < k′ < k′′, then we remove [〈j′, k′〉 from Ba and insert [〈j, k〉 in Ba,
(b) If k′ < k′′ < k, then we remove 〈j′′, k′′〉] from Ba and insert 〈j, k〉] in Ba,
(c) Otherwise (k′ < k < k′′), we leave the trees unchanged.

We say that a BWT a-run BWT [l, . . . , r] contains a pair or, equivalently, contains a SA-
sample, if there exists some 〈j, k〉 ∈ Ba such that k ∈ [l, r]. It is easy to see that the



4.3. Run-Length Compressed Working Space 79

following invariants hold for the above three rules: (i) each BWT run contains either no
pairs, a singleton pair, or two pairs—one open and one close; (ii) If a BWT run contains

an open [〈j′, k′〉 and a close 〈j′′, k′′〉] pair, then k′ < k′′; (iii) once we add a SA-sample
inside a BWT run, that run will always contain at least one SA-sample.

We say that BWT-position k is marked by SA-sample 〈j, k〉, when a = T [j] = BWT [k]
and 〈j, k〉 ∈ Ba.

Let BWT [k$] = $. By saying that T -positions 0, . . . , j have been processed, we mean
that—starting with all trees empty—we have applied the update rules to the SA-samples
〈0, k$〉, 〈1, BWT.LF (k$)〉, 〈2, BWT.LF 2(k$)〉, . . . , 〈j, BWT.LF j(k$)〉, whereBWT.LF i(k$)
denotes i applications of the LF map starting from BWT-position k$. We now prove that,
after processing 0, . . . , j, we can locate at least one occurrence of any string that occurs
in T [0, . . . , j]. This property will allow us to locate LZ phrase boundaries and previous
occurrences of LZ phrases.

Lemma 3. If 0, . . . , j have been processed and [l, r] is the BWT interval associated with←−
V ∈ Σm, with V right-maximal in T , then

∃〈j′, k′〉 ∈ Ba such that k′ ∈ [l, r] if and only if Va occurs in T [0, . . . , j].

Proof. (⇒) If 〈j′, k′〉 ∈ Ba with k′ ∈ [l, r] exists, then clearly T [j′ − m, . . . , j′] = V a.
Moreover, since we processed T -positions 0, . . . , j only, it must be the case that j′ ≤ j and
hence Va occurs in T [0, . . . , j].

(⇐) Let T [t, . . . , t+m] = V a, with t ≤ j−m. Consider the BWT a-run corresponding
to T [t+m] = a. One of the following cases can hold true:

(1) The BWT a-run is entirely included in BWT [l, . . . , r] and is neither a prefix nor
a suffix of BWT [l, . . . , r], that is BWT [l, . . . , r] = XcaedY , for some X,Y ∈ Σ∗, c, d 6=
a, e > 0. Then, it follows from invariant (iii) and rule (A) that since we have visited
T -position t+m, the a-run must contain at least one SA-sample. This is the pair 〈j′, k′〉
we are looking for.

(2) The BWT a-run spans either position l or position r. Since V is right-maximal in
T , then BWT [l, . . . , r] contains also a character b 6= a. We therefore have that either (i)
BWT [l, . . . , r] = aeXbY , or (ii) BWT [l, . . . , r] = Y bXae, where X,Y ∈ Σ∗, e > 0. The
two cases are symmetric hence we discuss only (i).

Consider all T -prefixes T [0, . . . , j′′] such that j′′ ≤ j, Va is a suffix of T [0, . . . , j′′], and

the lexicographic rank of
←−−−−−−−−−−−
T [0, . . . , j′′ − 1] among all

←−
T -suffixes is k′′ ∈ [l, l + e − 1] (i.e.

the suffix lies in BWT [l, . . . , l + e − 1] = ae). There exists at least one such T -prefix:

T [0, . . . , t+m]. Then, the rank k′ of the lexicographically largest
←−
T -suffix with the above

properties is such that 〈j′, k′〉 ∈ Ba for some j′ ≤ j. This is implied by the three update
rules described above. The BWT position k corresponding to T -position t+m lies in the
BWT interval [l, l + e − 1], therefore either (i) k is the rightmost position visited in its
run (and it is marked with a SA-sample), or (ii) the rightmost visited position k′ > k in
[l, l + e− 1] is marked with a SA-sample (note that lexicographically largest translates to
rightmost on BWT intervals).

We can drop the right-maximality requirement from Lemma 3.

Corollary 1. Once processed T -positions 0, . . . , j − 1 (none if j = 0), after processing
also j, . . . , j + m − 1, m > 0, if a string W ∈ Σm occurs in T [0, . . . , j + m − 1], then we
can locate one of its occurrences.



80 4. Computing LZ77 in Compressed Working Space

Proof. We prove the property by induction on |W | = m > 0. Let W = Va, V ∈ Σm−1, a ∈
Σ. If m = 1, then V = ε (empty string). Since T contains at least two distinct characters
(a and $), V is right-maximal. Therefore we can apply Lemma 3 to find an occurrence of
W = a.

If m > 1, then |V | > 0 and two cases can occur. If V is right-maximal, then we can
again apply Lemma 3 to find an occurrence of W = Va in T [0, . . . , j +m− 1] (remember
that Va occurs in T [0, . . . , j + m − 1]). If, instead, V is not right-maximal, then it is
always followed by a in T . By inductive hypothesis we can locate an occurrence π of V in
T [0, . . . , j +m− 2]. But then, since all occurrences of V in T are followed by a, π is also
an occurrence of W = Va in T [0, . . . , j +m− 1].

Corollary 1 gives us a recursive algorithm to locate previous occurrences of phrases.
Figures 4.2, 4.3, and 4.4 depict the three cases of the strategy (see next section for a
more detailed description). In Figure 4.2 the phrase prefix is right-maximal but the letter
that follows is not sampled on the BWT range (we output a LZ factor); in Figure 4.3 the
phrase prefix is right-maximal and the letter that follows is sampled on the BWT range
(we extend the current LZ factor); in Figure 4.4 the phrase prefix is not right-maximal
(we extend the current LZ factor).

BWT (
←−
T ) processed sample

#$AGGAGAGAGGAG X 1
AG#$AGGAGAGAGG X 3
AGAGAGGAG#$AGG
AGAGGAG#$AGGAG
AGGAG#$AGGAGAG
AGGAGAGAGGAG#$
G#$AGGAGAGAGGA X 2
GAG#$AGGAGAGAG
GAGAGAGGAG#$AG
GAGAGGAG#$AGGA
GAGGAG#$AGGAGA
GGAG#$AGGAGAGA
GGAGAGAGGAG#$A
$AGGAGAGAGGAG# X 0

T = # G A G G A G A G A G G A $
processed X X X X

BWT range
of ’G’





Figure 4.2: Case 1: we are trying to extend the phrase prefix ’G’ with a ’G’. The range of ’G’
spans more than 1 run (’G’ is right-maximal) and there are no sampled ’G’ in the range. It follows
that ’GG’ does not appear before in the text. Note that in this and in the following pictures, the
text is already LZ77-factored (vertical bars) for clarity.



4.3. Run-Length Compressed Working Space 81

BWT (
←−
T ) processed sample

#$AGGAGAGAGGAG X 1
AG#$AGGAGAGAGG X 3
AGAGAGGAG#$AGG
AGAGGAG#$AGGAG
AGGAG#$AGGAGAG
AGGAGAGAGGAG#$
G#$AGGAGAGAGGA X 2
GAG#$AGGAGAGAG X 4
GAGAGAGGAG#$AG
GAGAGGAG#$AGGA
GAGGAG#$AGGAGA
GGAG#$AGGAGAGA X 5
GGAGAGAGGAG#$A
$AGGAGAGAGGAG# X 0

T = # G A G G A G A G A G G A $
processed X X X X X X

BWT range
of ’A’





Figure 4.3: Case 2: we are trying to extend the phrase prefix ’A’ with a ’G’. The range of ’A’
spans more than 1 run (’A’ is right-maximal) and there is a sampled ’G’ in the range. It follows
that ’AG’ appears before in the text (at position sample− length = 3− 1 = 2).

Pseudocode

Our complete procedure is reported as Algorithm 14. The algorithm just builds (line 1)

RLBWT+(
←−
T ) using the online algorithm of Section 3.3, and then calls the sub-procedure

described as Algorithm 15 to convert RLBWT+(
←−
T ) to LZ77(T ). This is the only step

requiring access to the input text, which is read only once from left to right. Since the
dynamic string we use is run-length compressed, this step requires O(r) words of working
space.

From this point we describe Algorithm 15. For brevity, RLBWT indicates the data

structure RLBWT+(
←−
T ). From lines 1 to 8 we initialize all variables. In order: the text

length n, the current position j in T , the position k in RLBWT corresponding to position
j in T (at the beginning, T [0] = RLBWT [k$] = $), the current LZ77 phrase prefix length
λ (last character T [j] excluded), the T -position π < j at which the current phrase prefix
T [j − λ, . . . , j − 1] occurs (π = ⊥ if λ = 0), the red-black trees Bs1 , . . . ,Bsσ used to
store SA-samples, the current character c = T [j] = RLBWT [k], and the interval [l, r]

corresponding to the current reversed LZ phrase prefix
←−−−−−−−−−−−−−
T [j − λ, . . . , j − 1] in RLBWT

(when λ = 0, [l, r] is the full interval [0, n− 1]).

The while loop at line 9 scans T positions from the first to last. First of all, we have
to discover if the current character T [j] = c ends a LZ phrase. In line 10 we count the
number u of runs that intersect interval [l, r] on RLBWT . If u = 1, then the current
phrase prefix T [j − λ, . . . , j − 1] is always followed by c in T (i.e. it is not right-maximal),
and consequently T [j] cannot be the last character of the current LZ phrase. Otherwise,



82 4. Computing LZ77 in Compressed Working Space

BWT (
←−
T ) processed sample

#$AGGAGAGAGGAG X 1
AG#$AGGAGAGAGG X
AGAGAGGAG#$AGG X
AGAGGAG#$AGGAG X
AGGAG#$AGGAGAG X 6
AGGAGAGAGGAG#$
G#$AGGAGAGAGGA X 2
GAG#$AGGAGAGAG X 4
GAGAGAGGAG#$AG X 11
GAGAGGAG#$AGGA X 9
GAGGAG#$AGGAGA X
GGAG#$AGGAGAGA X 5
GGAGAGAGGAG#$A
$AGGAGAGAGGAG# X 0

T = # G A G G A G A G A G G A $
processed X X X X X X X X X X X X

BWT range
of ’GGAG’

{

Figure 4.4: Case 3: we are trying to extend the phrase prefix ’GAGG’ with an ’A’. The range of
’GGAG’ contains only one run (’GAGG’ is not right-maximal). Then, all ’GAGG’ are followed by
’A’ in the text. Since we previously located ’GAGG’ (inductive hypothesis) at position 1, it follows
that also ’GAGGA’ appears at position 1. Note that not all processed positions are marked with
a SA sample (only the most external ones in each run).

by Lemma 3 T [j − λ, . . . , j] occurs in T [0, . . . , j − 1] if and only if there exists a SA-
sample 〈j′, k′〉 ∈ Bc such that l ≤ k′ ≤ r. The existence of such pair can be verified
with a binary search on the red-black tree Bc. In line 11 we perform these two tests. If
at least one of these two conditions holds, then T [j − λ, . . . , j] occurs in T [0, . . . , j − 1]
and therefore it is not a LZ phrase. If this is the case, we now have to find π < j − λ
such that T [π, . . . , π + λ] = T [j − λ, . . . , j] (i.e. a previous occurrence of the current LZ
phrase prefix). The implementation of this task follows the inductive proof of Corollary
1. If u = 1 (current phrase prefix is not right-maximal) then π is already the value we
need. Otherwise (Lines 12-13) we find a SA-sample 〈j′, k′〉 ∈ Bc such that k′ ∈ [l, r]
(such pair must exist since u > 1 and the condition in Line 11 succeeded). Procedure
Bc.locate(l, r) returns such j′ (to make the procedure deterministic, one could return the
value j′ associated with the smallest BWT position k′ ∈ [l, r]). Then, we assign to π the
value j′−λ (Line 13). We can now increment the current LZ phrase prefix length (Line 14)

and update the BWT interval [l, r] so that it corresponds to the string
←−−−−−−−−−−−−−
T [j − λ+ 1, . . . , j]

(LF mapping in Line 15).

If both the conditions at line 11 fail, then the string T [j − λ, . . . , j] does not occur in
T [0, . . . , j − 1] and therefore is a LZ phrase. By the inductive hypothesis of Corollary 1,
π < j − λ is either ⊥—if λ = 0—or such that T [π, . . . , π + λ − 1] = T [j − λ, . . . , j − 1]
otherwise. At line 17 we can therefore output the LZ factor. We now have to open (and
start searching in RLBWT) a new LZ phrase: at lines 18-20 we reset the current phrase



4.3. Run-Length Compressed Working Space 83

prefix length, set π to ⊥, and reset the interval associated to the current (reversed) phrase
prefix to the full interval.

All we are left to do now is to process position j (i.e. apply the update rules to
the SA-sample 〈j, k〉) and proceed to the next text position. At line 21 we locate the
(inclusive) borders [lrun, rrun] of the BWT run containing position k (i.e. k ∈ [lrun, rrun]).
This information is used at line 22 to apply the update rules on Bc and on the SA-sample
〈j, k〉. Finally, we increment the current T -position j (line 23), compute the corresponding
position k on RLBWT (line 24), and read the next T -character c on the RLBWT.

Algorithm 14: rle lz77 1(T)

input : A text T ∈ Σn beginning with $ and ending with #
output: LZ77 factors of T in text order.

1 RLBWT ← build rev RLBWT (T ); /* Build RLBWT+(
←−
T ) */

2 rlbwt to lz77(RLBWT ); /* convert RLBWT+(
←−
T ) to LZ77 */

Analysis

rank, access, and insert operations on RLBWT take O(log r) time each. Operations
Bc.exists sample(l, r) (line 11) and Bc.locate(l, r) (Line 13) require a binary search on the
red-black tree and can also be implemented inO(log r) time. RLBWT.number of runs(l, r)
is the number of bits set in Vall[l, . . . , r], plus 1 if Vall[l] = 0: this operation requires there-
foreO(1) rank/access operations on Vall (O(log r) time). Similarly, RLBWT.locate run(k)
requires finding the two bits set preceding and following position k in Vall (O(log r) time
with a constant number of rank and select operations). We obtain:

Theorem 20. Algorithm 14 computes the LZ77 factorization of a text T ∈ Σn in O(r)
words of working space and O(n log r) time, r being the number of runs in the Burrows-

Wheeler transform of
←−
T .

Implementation

The algorithm described in this section has been implemented in our library DYNAMIC,
where it takes the name rle-lz77-1. See Section 6.4.4 for a description and theoret-
ical analysis of the implementation. See Chapter 7 for an experimental evaluation of
rle-lz77-1.

4.3.2 Second Algorithm: SA Sampling Based on LZ77 Factors

As we will empirically demonstrate in Chapter 7, storing two suffix array samples per
BWT run could be expensive. In practice, z is often smaller than r (see, e.g. [77]) so a
suffix array sampling based on LZ77 factors is more desiderable. In this section we show
an algorithm achieving this goal.

Here we give an overview of the algorithm, which is described more in detail in the
next subsection. The algorithm works in three steps. In the first step, we build online

RLBWT+(
←−
T ) by reading T -characters from left to right and by inserting them in a run-

length compressed dynamic string data structure (with the same algorithm used in the



84 4. Computing LZ77 in Compressed Working Space

Algorithm 15: rlbwt to lz77(RLBWT )

input : A run-length Burrows-Wheeler transform data structure RLBWT over

the reverset text
←−
T (i.e. RLBWT+(

←−
T ))

output: LZ77 factors of T in text order.

1 n← |RLBWT |; /* T length (equal to RLBWT’s length) */

2 j ← 0 ; /* Last position (on T) of current LZ phrase prefix */

3 k ← k$ ; /* Position of $ in RLBWT */

4 λ← 0; /* Length of current LZ phrase prefix */

5 π ← ⊥; /* Previous occurrence of current LZ phrase prefix */

6 Bs1 , . . . ,Bsσ ← ∅; /* Initialize red-black trees of SA-samples */

7 c← RLBWT [k]; /* Current T character */

8 [l, r]← [0, n− 1]; /* Range of current LZ phrase prefix in RLBWT */

9 while j < n do

10 u← RLBWT.number of runs(l, r); /* Runs intersecting [l, r] */

11 if u = 1 or Bc.exists sample(l, r) then

12 if u > 1 then
13 π ← Bc.locate(l, r)− λ; /* Occurrence of phrase prefix */

14 λ← λ+ 1; /* Increase length of current LZ phrase */

15 [l, r]← RLBWT.LF ([l, r], c); /* Backward search step */

16 else
17 Output 〈π, λ, c〉; /* Output LZ77 factor */

18 λ← 0; /* Reset phrase prefix length */

19 π ← ⊥; /* Reset phrase prefix occurrence */

20 [l, r]← [0, n− 1]; /* Reset range of current LZ phrase prefix */

21 [lrun, rrun]← RLBWT.locate run(k) ; /* run of BWT position k */

22 Bc.update tree(〈j, k〉, [lrun, rrun]); /* Apply update rules */

23 j ← j + 1; /* Increment T position */

24 k ← RLBWT.LF (k); /* RLBWT position corresponding to j */

25 c← RLBWT [k]; /* Read next T character */

previous section). At the same time, we search in the RLBWT the current (reversed)
LZ77 phrase with the strategy described in Section 4.2. While doing this, we mark BWT
positions corresponding to sources of (reversed) LZ phrases with the corresponding phrase

rank: while searching the j-th LZ phrase, as soon as the BWT interval for
←−
Wc, W ∈

Σλ, c ∈ Σ, λ > 0 becomes empty, we mark one of the F-positions in the BWT interval

for
←−
W with the integer j, being careful of choosing a position corresponding to a previous

occurrence of W in the text (not the current one). Note that a F-position can be assigned
more than one integer, so we need to maintain sets of integers on a subset of F-positions.
This problem can be solved efficiently with a dynamic sparse bitvector marking with a
’1’ F-positions with at least one integer, with a dynamic succinct bitvector storing sets



4.3. Run-Length Compressed Working Space 85

multiplicities in unary (i.e. a size-k set, k > 0, corresponds to the sequence of bits 10k−1

in this bitvector), and with a dynamic sequence of integers (for this last component we
can use the SPSI described in Section 3.3.1).

In the second step, we scan T from left-to-right by using the RLBWT just built (i.e.
by applying iteratively the LF function starting from F-position 0) and we use the integers
stored in the previous step to locate the sources of LZ phrases. We store such sources in
a vector SOURCES[0, . . . , z − 1] initialized with ⊥ values: while reading text position
i, if the position is associated with a set {j1, ..., jt} of integers, we assign the value i to
SOURCES[j1], . . . , SOURCES[jt]. Note that i is the last position of the source, so in
the next algorithm step we will need to subtract λ from it before outputting the LZ77
factor.

In the third and last step we delete all structures except SOURCES and re-build
RLBWT by reading T left-to-right. As done in step 1, while building RLBWT we search

the current (reversed) LZ phrase. In this way, each time the BWT interval for
←−
Wc, W ∈

Σλ, c ∈ Σ, λ ≥ 0 becomes empty, we output the LZ77 factor 〈(SOURCES[j]−λ)+1, λ, c〉
(or 〈⊥, 0, c〉 if λ = 0), j = 0, . . . , z − 1 being the rank of the current LZ phrase. Note that
SOURCES[j] is ⊥ if and only if the j-th phrase is a single character. Note moreover that
our second and third steps could be integrated in one single step by storing in SOURCES

also phrase lengths during the second step. Dividing the strategy in three steps allows
saving some space in practice (even though it does not make any difference under big-O
notation).

Pseudocode

Algorithm 16 describes steps 1 (lines 1-22) and 2 (lines 23-29) sketched above. In lines
1-5 we initialize the number z of LZ phrases (0 at the beginning: we will count them
online), the RLBWT (as an empty run-length encoded string data structure), the BWT
interval [l, r] of the current LZ phrase prefix, the current LZ phrase prefix length λ, and
the position k of the BWT terminator character $ on the L column of the BWT. At the
beginning, k = ⊥ (undefined) as the BWT is empty.

We are going to read T [i] for i = 0, . . . , n−1 and build RLBWT+(
←−
T ) while computing

phrase boundaries. At lines 7-8 we perform a backward search step to extend the BWT
interval [l, r] with the current text character. Two cases can occur.

If the interval [l′, r′] corresponding to
←−
Wc, W ∈ Σλ, c = T [i] ∈ Σ, λ ≥ 0 is empty

(line 9), then Wc is a LZ77 phrase and—in the case λ > 0—we need to assign the current

phrase rank to one of the sources of
←−
W on the RLBWT. If λ = 0, then the phrase is a single

character and it has no source. Otherwise (lines 11-14), we need to pick a position inside
[l, r] different than the current occurrence of W . Since the last character we inserted
in the RLBWT is W [|W | − 1], the current occurrence of W appears at the k-th BWT
row, k being the position of $ in the L-column. At lines 12 and 14 we therefore insert
the integer z, z being the current LZ phrase rank, in the set associated with either F-
position l or r, depending on which one is different than k. In pseudocode 16 we denote
the integer set associated with F-position k with RLBWT.set at(k). Note that it must
be the case that r > l since W occurs at least twice in T [0, . . . , i− 1]. We finally update

RLBWT+(
←−−−−−−−−−−
T [0, . . . , i− 1]) to RLBWT+(

←−−−−−−−
T [0, . . . , i]) with an extension step (line 15) and,

at lines 16-18 we reset the BWT interval to the full interval, reset the phrase length λ to



86 4. Computing LZ77 in Compressed Working Space

0, and increase the number z of LZ phrases seen until now.

In the second case, the interval [l′, r′] corresponding to
←−
Wc, W ∈ Σλ, c = T [i] ∈ Σ, λ ≥

0 is not empty (line 19). Then, we simply increase the length of the current phrase prefix
(line 14) and extend the RLBWT with T [i] (line 21). The extension step at line 21 returns
the new position k of the $ character on the L column of the BWT. Note that the (reverse
of the) current occurrence of Wc falls inside [l′, r′], so we need to update this interval by
extending its right boundary by 1 (line 22).

We can now scan the RLBWT and assign a source to each phrase. At line 23 we
initialize the SOURCES vector with ⊥ values. From here, k represents the F-position
on the BWT corresponding to text position i (starting from i = 0). Since we start
from T [0] = $ and $ appears at position 0 on the F-column, at line 24 we initialize
k to 0. For each i = 0, . . . , n − 1, we then check if F-position k is associated with a
nonempty set RLBWT.set at(k) of integers. If this is the case, for each such integer j ∈
RLBWT.set at(k) at line 27 we assign the source i to the j-th LZ phrase. Synchronization
between indexes i and k is guaranteed by the execution of the LF step at line 28.

The complete procedure to compute the parse is reported as Algorithm 17. We do
not discuss it in detail as it basically repeats the online construction of the RLBWT
described above while computing LZ phrase boundaries. While doing this, at line 10
we access the SOURCES vector computed with procedure find sources(T ) and output
LZ77 phrases in text order, being careful to subtract the phrase length from the content of
SOURCES since this vector contains the last position of each phrase source. To simplify
the description, at this line we use the convention that (SOURCES[j] − λ) + 1 = ⊥ if
SOURCES[j] = ⊥.

Analysis

Building the RLBWT in the first and third steps and performing the n backward search
steps takes overall O(n log r) time (see Section 3.3). We update the sets of integers once
per phrase; we remind that such sets are encoded with a dynamic gap-encoded bitvector,
a dynamic succinct bitvector, and a dynamic string. The total number of integers is z, so
each update operation on the sets takes O(log z) time with the structures described in Sec-
tion 3.3 and the red-black tree implementing the dynamic string. Since z ∈ O(n/ logσ n),
updating and querying the sets takes therefore O(z log z) ⊆ O(n log σ) ⊆ O(n log r) time.

As discussed in Section 3.3, the RLBWT takes O(r) words of space. Each integer
stored in the sets takes O(1) words (including RBT pointers), so the algorithm uses overall
O(r+z) words of working space. We can reduce the working space to O(r) words by means
of the following theorem:

Lemma 4. The number z of LZ77 phrases of a text T can be computed with an online
algorithm running in O(n log r) time and using O(r) words of working space, r being the

number of equal-letter runs in BWT (
←−
T ).

Proof. Algorithm 17 without the instructions at lines 5 and 10 solves exactly this problem:
we just need to return the value z at the end of its execution.

We can use Lemma 4 and compute z in O(n log r) time and O(r) words of working
space before computing the actual parse. If z ≤ 2r, we execute Algorithm 17, otherwise



4.3. Run-Length Compressed Working Space 87

Algorithm 16: find sources(T )

input : A text T ∈ Σn beginning with $ and ending with #
output: A vector SOURCES[0, . . . , z− 1], z being the size of the LZ77 parse, such

that SOURCES[j] is the last position of j-th phrase’s source.

1 z ← 0; /* Initialize size of the parse */

2 RLBWT ← ε; /* Initialize RLBWT to empty string */

3 [l, r]← [0, 0]; /* Initialize range on RLBWT */

4 λ← 0; /* Length of current LZ phrase */

5 k ← ⊥; /* Position of $ in RLBWT (here ⊥ because RLBWT = ε) */

6 for i = 0 . . . |T | − 1 do
7 c← T [i]; /* read current text character */

8 [l′, r′]← RLBWT.LF ([l, r], c); /* backward search step */

9 if l′ > r′ then

10 if λ > 0 then
11 if k = l then
12 RLBWT.set at(r).insert(z);

13 else
14 RLBWT.set at(l).insert(z);

15 RLBWT.extend(c); /* insert character c in the BWT */

16 [l, r]← [0, i]; /* reset [l, r] to full interval */

17 λ← 0; /* reset phrase length */

18 z ← z + 1; /* increase number of phrases */

19 else
20 λ← λ+ 1; /* increase current phrase length */

21 k ← RLBWT.extend(c); /* extend with c. Return position of $ */

22 [l, r]← [l′, r′+ 1]; /* new suffix falls inside [l′, r′]: increment r′ */

23 SOURCES[0, . . . , z − 1]← 〈⊥, . . . ,⊥〉; /* initialize SOURCES */

24 k ← 0; /* position of $ on F column */

25 for i = 0 . . . |T | − 1 do

26 for each j ∈ RLBWT.set at(k) do
27 SOURCES[j]← i; /* assign source to the j-th phrase */

28 k ← RLBWT.LF (k); /* LF step: navigate T forward */

29 return SOURCES;

Algorithm 14. Overall, this combined strategy runs therefore in O(n log r) time and uses
O(r) words of working space. We obtain:

Theorem 21. The algorithm above described computes the LZ77 factorization of a text
T ∈ Σn in O(r) words of working space and O(n log r) time, r being the number of runs



88 4. Computing LZ77 in Compressed Working Space

Algorithm 17: rle lz77 2(T)

input : A text T ∈ Σn beginning with $ and ending with #
output: LZ77 factors of T in text order.

1 z ← 0; /* Initialize size of the parse */

2 RLBWT ← ε; /* Initialize RLBWT to empty string */

3 [l, r]← [0, 0]; /* Initialize range on RLBWT */

4 λ← 0; /* Length of current LZ phrase */

5 SOURCES ← find sources(T ); /* locate phrase sources */

6 for i = 0 . . . |T | − 1 do
7 c← T [i]; /* read current text character */

8 [l′, r′]← RLBWT.LF ([l, r], c); /* backward search step */

9 if l′ > r′ then

10 Output 〈(SOURCES[z]− λ) + 1, λ, c〉; /* Output LZ77 factor */

11 RLBWT.extend(c); /* insert character c in the BWT */

12 [l, r]← [0, i]; /* reset interval */

13 λ← 0; /* reset phrase length */

14 z ← z + 1; /* increase number of phrases */

15 else
16 λ← λ+ 1; /* increase current phrase length */

17 RLBWT.extend(c); /* extend with c */

18 [l, r]← [l′, r′+ 1]; /* new suffix falls inside [l′, r′]: increment r′ */

in the Burrows-Wheeler transform of
←−
T .

Implementation

The algorithm described in this section has been implemented in our DYNAMIC library,
where it takes the name rle-lz77-2. See Section 6.4.4 for a description and theoret-
ical analysis of the implementation. See Chapter 7 for an experimental evaluation of
rle-lz77-2.



5
Compressed Computation:

Recompression and Indexing

Chapters 3 and 4 dealt with the problem of efficiently compressing text, i.e. turning an
uncompressed format into a compressed one. In this chapter, we fully enter the field of
compressed computation: the algorithms we describe take as input compressed representa-
tions of the text and tackle the problem of manipulating such data and answering queries
on it using asymptotically the same working space as the sizes of the input and the output.
We focus on two important compression techniques for highly repetitive text collections,
LZ77 and RLBWT, tackling two fundamental problems in the field:

(1) can we restructure compressed data (i.e. re-compress it, see Section 5.2)?
(2) can we turn a compressed file into a compressed index?

Section 5.2 deals with question (1). We show algorithms to convert between RLBWT
and LZ77 formats using a working space proportional to the sizes of the input and the
output. Part of these results are unpublished (in particular, the conversion LZ77 →
RLBWT ). Sections 5.3.2 and 5.3.3 describe two compressed indexes for repetitive text
collections; the content of these sections is based on papers (v) and (vi). By com-
bining the results of Sections 3.3, 4.3, and 5.2 we show that such indexes can be either
built by reading the text once character-by-character (e.g. from a streamed source) or
from a compressed-file representation (either based on LZ77 or RLBWT), thus answering
affirmatively to question (2). The results of Section 5.2 imply, moreover, the possibil-
ity of converting—within compressed working space—between RLBWT- and LZ77-based
indexes such as the ones described in [65,66,67,111] and Sections 5.3.2 and 5.3.3.

5.1 Repetitivity Measures: The r-z-g* Relations

The most successful indexes for repetitive text collections are based on run-length encod-
ing of the Burrows-Wheeler transform, on the Lempel-Ziv (LZ77) factorization, and on
straight-line programs, i.e. grammars that generate only one string (the text). Before
introducing compressed indexes for repetitive collections based on these techniques, it is
interesting to briefly discuss the relationships among these three measures of repetitive-
ness: the number r of BWT runs, the number z of LZ77 phrases, and the size g∗ of the
smallest SLP (i.e. number of rules of the smallest grammar generating the text). The
relationship between Lempel Ziv parsing and Grammar compression has been settled by
Rytter with the following theorem:



90 5. Compressed Computation: Recompression and Indexing

Theorem 22. Lempel Ziv and Grammar compression [106]. The sizes z of the LZ77
factorization and g∗ of the smallest grammar satisfy z ≤ g∗ and g∗ ∈ O(z log(n/z)).

Moreover, the bound g∗ ∈ O(z log(n/z)) is almost tight:

Theorem 23. [50]. The sizes z of the LZ77 factorization and g∗ of the smallest grammar
satisfy g∗ ∈ Ω(z log n/ log logn)

These inequalities imply that grammar compression is inherently less powerful than
Lempel-Ziv parsing, especially considering the fact that the smallest SLP cannot be ap-
proximated in polynomial time within a constant factor unless P=NP [13], and that the
LZ77 factorization can be computed in linear time [58].

The exact relationships among r, z, and g∗, however, remain an open problem. Both
z and r are at least σ and can be Θ(σ), e.g. in the text (0 1 . . . σ − 1)e, e > 0. Being1

g∗ ∈ Ω(log n), this example shows—on constant-sized alphabets—that the rates g∗/r and
g∗/z can be Θ(log n).

The following theorem shows the existence of texts that are asymptotically more com-
pressible with LZ77 than with RLBWT:

Theorem 24. There exists an infinite collection of strings for which r/z ∈ Θ(log n) holds

Proof. Such family of strings is that of de Bruijn sequences of order k > 1, i.e. circular
strings of length σk having as substrings all the strings in Σk. Consider the BWT row-
partition induced by length-(k − 1) substrings of a de Bruijn sequence in the first k − 1
columns of the matrix. Each x ∈ Σk−1 appears exactly σ times in the de Bruijn sequence
and all such occurrences are preceded by different characters. It follows that each of the
above BWT classes contains at least σ − 1 runs, so the BWT has at least (σ − 1)σk−1 ∈
Θ(σk) = Θ(n) runs. The number of LZ77 phrases of any text is, on the other hand, always
O(n/ logσ n). The rate r/z is maximized considering a constant-sized alphabet, on which
we get r/z ∈ Θ(log n).

The above theorem may suggest that LZ77 is inherently more powerful than RLBWT.
However, as shown in the following theorem, this is not the case:

Theorem 25. There exists an infinite collection of strings for which z/r ∈ Θ(log n) holds

Proof. Fibonacci words satisfy this property. Such words are defined recursively as follows:
f1 = a, f2 = b, fn = fn−1fn−2. Fibonacci words are a particular case of standard words;
such words produce a total clustering of the alphabet letters in the BWT [79] (i.e. two
runs). On the other hand, the LZ77 factorization of fn corresponds to the factorization of
fn into singular words f̂i, where each f̂i is obtained by complementing the first letter in the
left rotation of the Fibonacci word fi (see [38] for more details). Since |fi| is exponential
in i, it follows that the Lempel-Ziv factorization of fn has Θ(log |fn|) factors.

Finally, Navarro [85] reports an example where—for big enough σ—r can grow by
O(
√
n) for each new edit in the text. Since z only grows by O(1) after a text edit,

this example suggests that there could possibly be texts for which r = Θ(z
√
n) holds.

Considering that g∗ ∈ O(z log(n/z)), this moreover suggests that there exist cases where
grammar compression is more powerful than run-length encoding of the Burrows-Wheeler
transform.

1since SLP nonterminal rules are of the form X → ZW , there must be at least a logarithmic number
of rules.



5.2. Recompression 91

5.2 Recompression

In this section we address a central point in compressed computation: can we restructure
compressed text (i.e. change compression format) without explicit decompression? Being
able to perform such task opens the possibility of (i) converting between compressed data
structures (e.g. self-indexes) based on different compressors and (ii) using algorithms
designed to work on a specific compression format taking as input a different compressed
input representation. In our case, recompression will serve as a powerful tool to build
in small space a compressed index based on multiple compressors taking as input any of
these compressed representations of the file.

5.2.1 Related Work

The term recompression was introduced almost simultaneously for the first time by Jeż [53],
Goto et al. [46], and Tamakoshi et al. [118]. Recompression indicates the process of re-
structuring compressed data (e.g. changing compression format) without explicit decom-
pression. In the first case [53], the author uses recompression as a powerful technique to
solve word equations, i.e. equations involving equalities between strings. The same tech-
nique was later used by the same author [53, 54, 55, 56] to solve several problems related
to straight-line programs, including pattern matching and approximation of the smallest
grammar. These interesting papers concern only grammar compression; the general idea
behind this technique is to restructure two straight-line programs in a normalized form
such that the resulting compressed representations are equal if and only if the original
(uncompressed) strings are equal. In [46, 118], the term is used more broadly to indicate
the conversion between different compression formats while using limited resources. In
particular, the string should not be fully decompressed during recompression (otherwise
the problem becomes trivial). Rytter [106] shows how to convert the LZ77 encoding of
a text into a grammar-based encoding, while Bannai et al. [2, 3] consider the opposite
direction (though pointing to LZ78 instead of LZ77). In [118] the authors consider conver-
sions between LZ78 and run-length encoding of the text. Note that LZ77 and run-length
encoding of the BWT are much more powerful than LZ78 and run-length encoding of the
text, respectively, so methods addressing conversion between LZ77 and RLBWT would be
of much higher interest.

In this section we show how to efficiently solve this problem in space proportional to
the sizes of these two compressed representations. See Definitions 1 and 2 for a formal
definition of RLBWT (T ) and LZ77(T ) as a list of r pairs and z triples, respectively. Let
RLBWT (T )→ LZ77(T ) denote the computation of the list LZ77(T ) using as input the
list RLBWT (T ) (analogously for the opposite direction). In this section, we describe the
following results:

(1) We can compute RLBWT (T ) → LZ77(T ) in O(n log r) time and O(r) words of
working space

(2) We can compute LZ77(T )→ RLBWT (T ) in O
(
n(log r+ log z)

)
time and O(r+ z)

words of working space

Result (1) is based on the algorithms described in Section 4.3 and requires space
proportional to the input only (output is streamed to disk). Result (2) requires space
proportional to the input plus the output, since data structures based on both compressors



92 5. Compressed Computation: Recompression and Indexing

are used into main memory. In order to achieve result (2), we show how we can (locally)
decompress LZ77(T ) while incrementally building a run-length BWT data structure of←−
T . Extracting text from LZ77 is a computationally expensive task, as it requires a time
proportional to the parse height h (see Definition 11) per extracted character [67], with h
as large as n in the worst case. The key ingredient of our solution is to use the run-length
BWT data structure itself to efficiently extract text from LZ77(T ).

We note that our algorithms perform a number of steps proportional to the size n of
the text. Considering that the compressed file could be exponentially smaller than the
text, a future improvement over our results would be to perform the same tasks in a time
proportional to r + z.

We recall, from Section 1.4, that RLBWT+(T ) indicates a run-length BWT data
structure supporting the computation of LF and FL functions and extend queries (as
opposed to RLBWT (T ), which indicates a list of pairs).

5.2.2 From RLBWT to LZ77

The algorithm we provide to compute RLBWT (T ) → LZ77(T ) is based on the result
presented in Section 4.3 (Algorithm 15). We recall that Algorithm 15 computes LZ77(T )

using RLBWT+(
←−
T ). Our strategy to compute LZ77(T ) using RLBWT (T ) is the follow-

ing:

1. We convert RLBWT (T ) to RLBWT+(T ) (i.e. we add support for RSA queries on
RLBWT (T ))

2. We compute RLBWT+(
←−
T ) using RLBWT+(T )

3. We run Algorithm 15 and compute LZ77(T ) using RLBWT+(
←−
T )

Let RLBWT (T ) = 〈λi, ci〉i=1,...,r (see Definition 1). Step 1 can be performed by just

inserting characters cλ11 cλ22 . . . cλrr (in this order) in a dynamic run-length encoded string
data structure.

Step 2 is performed by extracting characters T [0], T [1], . . . , T [n−1] from RLBWT+(T )
and inserting them (in this order) in a dynamic RLBWT data structure with the BWT
construction algorithm described in Section 2.5. Since this algorithm builds the RLBWT

of the reversed text, the final result is RLBWT+(
←−
T ). Algorithm 18 shows the pseudocode

of this procedure. Note that we call the FL function on RLBWT, i.e. function mapping F-
to L- BWT positions. FL requires an access and a rank on the F column and a select

on the L column of the BWT. In Line 3, note that we compute the RLBWT position
corresponding to T [0] as RLBWT.FL(RLBWT.FL(0)). Since $ appears at F-position 0,
RLBWT.FL(0) returns the L-position containing $, i.e. the F-position containing T [0].
With another application of FL we obtain the L-position containing T [0]. Finally, note that
in Line 4 we perform just |RLBWT | − 1 steps since we already inserted $ in RLBWT rev.

We can state our first result:

Theorem 26. Conversion RLBWT (T )→ LZ77(T ) can be performed in O(n log r) time
and O(r) words of working space.

Proof. We use the dynamic RLBWT structure of Section 3.3.3 to implementRLBWT+(T )

and RLBWT+(
←−
T ). Step 1 requires n insert operations in RLBWT+(T ), and terminates



5.2. Recompression 93

Algorithm 18: invert rlbwt(RLBWT )

input : RLBWT = RLBWT+(T )

output: RLBWT+(
←−
T )

1 RLBWT rev ←′ $′; /* Initialize empty RLBWT of reverse text */

2 j ← 0; /* current text position */

3 i← RLBWT.FL(RLBWT.FL(0)); /* RLBWT position corresponding to j */

4 while j < |RLBWT | − 1 do
5 RLBWT rev.extend(RLBWT [i]); /* left-extend reversed text */

6 j ← j + 1; /* Advance position on text */

7 i← RLBWT.FL(i); /* RLBWT position crresponding to j */

8 return RLBWT rev;

therefore in O(n log r) time. Since the string we are building contains r runs, this step
uses O(r) words of working space. Step 2 (Algorithm 18) calls n extend and FL queries
on dynamic RLBWTs. From Section 2.5, extend requires a constant number of rank

and insert operations. The FL function requires just an access and a rank on the F
column and a select on the L column. It follows that both operations are supported in
O(log r) time, so also step 2 terminates in O(n log r) time. Recall (Section 1.4) that r

is defined to be the maximum between the number of runs in BWT (T ) and BWT (
←−
T ).

Since in this step we are building RLBWT+(
←−
T ) using RLBWT+(T ), the overall space is

bounded by O(r) words. Finally, Algorithm 15 terminates in O(n log r) time while using
O(r) words of space (Theorem 20). The claimed bounds for our Algorithm to compute
RLBWT (T )→ LZ77(T ) follow.

In Figure 5.1 we contextualize Theorem 26 in our framework of algorithmic tools
(Figure 1.1).

5.2.3 From LZ77 to RLBWT

Our strategy to convert LZ77(T ) to RLBWT (T ) comprises the following steps:

1. We extract T [0], T [1], . . . , T [n− 1] from LZ77(T ) and build online RLBWT+(
←−
T )

2. We convert RLBWT+(
←−
T ) to RLBWT+(T )

3. We extract equal-letter runs from RLBWT+(T ) and stream RLBWT (T ) to the
output

Step 2 can be performed with Algorithm 18. Step 3 requires reading RLBWT+(T )[0],
..., RLBWT+(T )[n− 1] and keeping in memory a character storing last run’s head and a
counter keeping track of last run’s length. Whenever we open a new run, we stream last
run’s head and length to the output.

The problematic step is number 1. As mentioned in the introduction, extracting a
character from LZ77(T ) requires to follow a chain of character copies. In the worst case,
the length h of this chain—also called the parse height (see Definition 11)—can be as



94 5. Compressed Computation: Recompression and Indexing

T LZ77(T) slz-rlbwt

Hk-BWT(T) RLBWT(T) s-rlbwt

|LZ77(T )|+
|RLBWT (T )| |RLBWT (T )|

|T |Hk(T ) |RLBWT (T )|

|T |H0(T )

|T |Hk(T )

|LZ77(T )|+
|RLBWT (T )|

|RLBWT (T )| + |T |/d

Recompression: RLBWT to LZ77

1

Figure 5.1: Our algorithm to convert RLBWT (T ) to LZ77(T ) uses a working space proportional
to the size of a run-length encoded BWT.

large as n. Our observation is that, since we are building RLBWT+(
←−
T ), we can use this

component to efficiently extract text from LZ77(T ): while decoding factor 〈πv, λv, cv〉, we
convert πv to a position on the RLBWT and extract λv characters from it. The main
challenge in achieving this goal is to convert text positions to RLBWT positions (taking
into account that the RLBWT is dynamic and therefore changes in size and content).

Considering that RLBWT+(
←−
T ) is built incrementally, we need a data structure to encode

a dynamic function Z : {0, ..., n− 1} → {0, ..., n− 1} mapping text positions to RLBWT
positions and supporting the following three operations (see below the list for a description
of how these operations will be used):

• map: Z(i). Compute the image of i

• expand: Z.expand(j). Set Z(i) to Z(i) + 1 for every i such that Z(i) ≥ j

• assign: Z(i)← j. Call Z.expand(j) and set Z(i) to j

We say that Z(i) is defined if we executed Z(i) ← j at some previous point of the
computation, for some j. For simplicity, we restrict our attention to the case where—when
calling Z(i) ← j—argument i is greater than all i′ such that Z(i′) is defined. This case
will be sufficient to solve our problem. We moreover assume that Z(i) is always defined
when calling Z(i) (this will be the case in our algorithm).

Function Z.expand(j) will be used when we insert T [i] at position j in the partial

RLBWT+(
←−
T ) and j is not associated with any phrase source (i.e. i 6= πv for all v =

1, . . . , z). Z(i) ← j will instead be used when we insert T [i] at position j in the partial

RLBWT+(
←−
T ) and i = πv for some v = 1, . . . , z (possibly more than one). In the next

section we show how to reduce this task to the elegant problem of finding a data structure
for a dynamic permutation.



5.2. Recompression 95

Dynamic functions

We provide a structure Z(i) satisfying:

Lemma 5. Letting z be the size of the LZ77 parsing of T , our data structure Z(i) takes
O(z) words of space and supports map, expand, and assign operations on Z : {0, ..., n −
1} → {0, ..., n− 1} in O(log z) time

Proof. First of all note that, since LZ77(T ) is our input, we know beforehand the domain
D = {π | 〈π, λ, c〉 ∈ LZ77(T ) ∧ π 6= ⊥} of Z. We can therefore restrict our attention
to functions Z ′ : {0, ..., d − 1} → {0, ..., n − 1}, d = |D| ≤ z. Then, to compute Z(i) we
map 0 ≤ i < n to a value 0 ≤ i′ < d by binary-searching a precomputed array containing
the sorted values of D and return Z ′(i′). Similarly, Z(i)← j is implemented by executing
Z ′(i′)← j (with i′ defined as above), and Z.expand(j) simply as Z ′.expand(j).

We use a dynamic gap-encoded bitvector C (see Section 3.3.2) marking with a bit set
positions j such that j = Z(i) for some i. When initializing Z, C is empty. Let k be the
number of bits set in C at some step of the computation. We can furthermore restrict
our attention to surjective functions Z ′′ : {0, ..., d − 1} → {0, ..., k − 1} as follows. Z ′(i′)
(map) returns C.select1(Z ′′(i′)). The assign operation Z ′(i′) ← j requires an insert

C.insert(1, j) followed by the execution of Z ′′(i′)← C.rank1(j). Operation Z ′.expand(j)
is implemented with C.insert(0, j).

To conclude, since we restrict our attention to the case where—when calling Z(i)← j—
argument i is greater than all i′ such that Z(i′) is defined, we will execute assign oper-
ations Z ′′(i′)← j′′ for increasing values of i′ = 0, 1, . . . , d− 1, where i′ = k is the current
domain size. We therefore focus on a new operation, append, denoted as Z ′′.append(j′′)
and whose effect is Z ′′(k)← j′′. We are left with the problem of finding a data structure
for a dynamic permutation Z ′′ : {0, ..., k − 1} → {0, ..., k − 1} with support for map and
append operations. Note that both domain and codomain size (k) are incremented by one
after every append operation.

Example 19. Let k = 5 and Z ′′ be the permutation 〈3, 1, 0, 4, 2〉. After Z ′′.append(2), k
increases to 6 and Z ′′ turns into the permutation 〈4, 1, 0, 5, 3, 2〉. Note that Z ′′.append(j′′)
has the following effect on the permutation: all numbers larger than or equal to j′′ are
incremented by one, and j′′ is appended at the end of the permutation.

To implement the dynamic permutation Z ′′, we slightly modify the SPSI data structure
described at Section 3.3.1. We remind the reader that the SPSI on the sequence s1, . . . , sm
is implemented using a red-black tree storing integers s1, . . . , sm in the leaves and partial
sums and size counters of the subtrees in internal nodes. Let PS be the partial sum
structure. We modify operation PS.insert(i) so that it returns the new red-black tree
leaf x storing the integer that has just been inserted (we remind that we always insert 0).
We moreover add a function PS.locate(x) taking as input a leaf in the red-black tree
and returning the (0-based) position inside the partial sum associated with leaf x: if leaf
x stores integer si, then PS.locate(x) returns i− 1. PS.locate(x) requires climbing the
tree from x to the root and use subtree-size counters to retrieve the desired value, and
therefore runs in O(logm) time.

At this point, the dynamic permutation Z ′′ is implemented using the partial sum
structure PS described above and a vector N of red-black tree leaves supporting append

operations (i.e. insert at the end of the vector). N can be implemented with a simple



96 5. Compressed Computation: Recompression and Indexing

vector of words with initial capacity 1. Every time we need to add an element beyond the
capacity of N , we re-allocate 2|N | words for the array. N supports therefore constant-time
access and amortized constant-time append operations. Starting with empty PS and N ,
we implement operations on Z ′′ as follows:

• Z ′′.map(i) returns PS.locate(N [i])

• Z ′′.append(j) is implemented by calling N.append(PS.insert(j))

Note that the partial sum structure built with this approach contains only zeros: rather
than using the values s1 = · · · = sm = 0, we exploit their positions in the partial sum
structure. Taking into account all components used to implement our original dynamic
function Z : {0, ..., n− 1} → {0, ..., n− 1}, we get the bounds of our lemma.

The algorithm

The steps of our algorithm to compute RLBWT+(
←−
T ) from LZ77(T ) are:

1. We sort D = {π | 〈π, λ, c〉 ∈ LZ77(T ) ∧ π 6= ⊥}

2. We process 〈πv, λv, cv〉v=1,...,z from the first to last triple as follows. When processing
〈πv, λv, cv〉:

(a) we use our dynamic function Z to convert text position πv to RLBWT position
j′ = Z(πv)

(b) we extract λv characters from RLBWT starting from position j′ by using the LF
function; at the same time, we extend RLBWT with the extracted characters.

(c) when inserting a character at position j of the RLBWT, if j corresponds to
some text position i ∈ D, then we update Z accordingly by setting Z(i) ← j.
If, on the other hand, j does not correspond to any text position in D, we
execute Z.expand(j).

Our algorithm is described as Algorithm 19. A detailed description of the pseudocode
and the proof of its complexity follow.

In Lines 1-5 we initialize all structures and variables. In order: we compute and sort set
D of phrase sources, we initialize current text position i (i is the position of the character

to be read), we initialize an empty RLBWT data structure (we will build RLBWT+(
←−
T )

online), and we create an empty dynamic function data structure Z. In Line 6 we enter
the main loop iterating over LZ77 factors. If the current phrase’s source is not empty (i.e.
if the phrase copies a previous portion of the text), we need to extract λv characters from
the RLBWT. First, in Line 8 we retrieve the RLBWT position j′ corresponding to text
position πv with a map query on Z. Note that, if πv 6= ⊥, then i > πv and therefore Z(πv)
is defined (see next). We are ready to extract characters from RLBWT. For λv times, we
repeat the following procedure (Lines 10-19). We read the l-th character from the source
of the v-th phrase (Line 10) and insert it in the RLBWT (Line 11). Importantly, the
extend operation at Line 11 returns the RLBWT position j at which the new character
is inserted; RLBWT position j correspond to text position i. We now have to check if i
is the source of some LZ77 phrase. If this is the case (Line 12), then we link text position



5.2. Recompression 97

i to RLBWT position j by calling a assign query on Z (Line 13). If, on the other hand,
i is not the source of any phrase, then we call a expand query on Z on the codomain
element j. Note that, after the extend query at Line 11, RLBWT positions after the j-th
are shifted by one. If j′ is one of such positions, then we increment it (Line 17). Finally,
we increment text position i (Line 19). At this point, we finished copying characters from
the v-th phrase’s source (or we did not do anything if the v-th phrase consists of only
one character). We therefore extend the RLBWT with the v-th trailing character (Line
20), and (as done before) associate text position i to RLBWT position j if i is the source
of some phrase (Lines 21-24). We conclude the main loop by incrementing the current
position i on the text (Line 25). Once all characters have been extracted from LZ77,

RLBWT is a run-length BWT structure on
←−
T . At Line 26 we convert it to RLBWT+(T )

with Algorithm 18 and return it as a series of pairs 〈λv, cv〉v=1,...,r.

Theorem 27. Algorithm 19 converts LZ77(T )→ RLBWT (T ) in O(n(log r+log z)) time
and O(r + z) words of working space

Proof. Sorting set D takes O(z log z) ⊆ O(n log z) time. Overall, we perform O(z)
map/assign and n expand queries on Z. All these operations take overall O(n log z) time.
We use the dynamic RLBWT structure of Section 3.3.3 to implement RLBWT+(T ) and

RLBWT+(
←−
T ). We perform n access, extend, and LF queries on RLBWT+(

←−
T ). This

takes overall O(n log r) time. Finally, inverting RLBWT+(
←−
T ) at Line 26 takes O(n log r)

time and O(r) words of space (Algorithm 18). We keep in memory the following structures:

D, Z, RLBWT+(
←−
T ), and RLBWT+(T ). The bounds of our theorem easily follow.

In Figure 5.2 we contextualize Theorem 27 in our framework of algorithmic tools
(Figure 1.1).

T LZ77(T) slz-rlbwt

Hk-BWT(T) RLBWT(T) s-rlbwt

|LZ77(T )|+
|RLBWT (T )| |RLBWT (T )|

|T |Hk(T ) |RLBWT (T )|

|T |H0(T )

|T |Hk(T )

|LZ77(T )|+
|RLBWT (T )|

|RLBWT (T )| + |T |/d

Recompression: LZ77 to RLBWT

1

Figure 5.2: Our algorithm to convert LZ77(T ) to RLBWT (T ) uses a working space proportional
to the sizes of a run-length encoded BWT and of the LZ77 parsing of T.



98 5. Compressed Computation: Recompression and Indexing

Algorithm 19: lz77 to rlbwt(〈πv, λv, cv〉v=1,...,z)

input : LZ77 factorization LZ77(T ) = 〈πv, λv, cv〉v=1,...,z of a text T
output: RLBWT representation 〈λv, cv〉v=1,...,r of T

1 D ← {π | 〈π, λ, c〉 ∈ LZ77(T ) ∧ π 6= ⊥}; /* Phrase sources */

2 sort(D); /* Sort phrase sources */

3 i← 0; /* Current position on T */

4 RLBWT ← ε; /* Init empty RLBWT of reversed text */

5 Z ← ∅; /* Init empty dynamic function structure */

6 for v = 1, . . . , z do
7 if πv 6= ⊥ then

8 j′ ← Z(πv); /* Map text position to RLBWT position */

9 for l = 1, . . . , λv do
10 c← RLBWT [j′]; /* read char from source */

11 j ← RLBWT.extend(c); /* left-extend reverse text’s RLBWT */

12 if i ∈ D then
13 Z(i)← j; /* j is the image of i */

14 else
15 Z.expand(j); /* j does not have counter-image */

16 if j ≤ j′ then
17 j′ ← j′ + 1; /* new char falls before j′ */

18 j′ ← RLBWT.LF (j′);
19 i← i+ 1; /* Advance text position */

20 j ← RLBWT.extend(cv); /* Extend with trailing character */

21 if i ∈ D then
22 Z(i)← j;
23 else
24 Z.expand(j);

25 i← i+ 1; /* Advance text position */

26 return reverse(RLBWT ); /* Build and return RLBWT (T ) */

5.3 Indexes For Highly Repetitive Text Collections

As discussed in the previous sections, entropy compression is not able to capture long
repetitions (asymptotically longer than the logarithm of the dataset size), therefore high-
order compressed FM indexes represent a poor solution to the problem of compressing
highly repetitive texts. Recent works [65, 66] showed that even indexes based on LZ78
are inappropriate to compress repetitive collections (recall, moreover, that LZ78 cannot
achieve exponential compression). However, such datasets can—at the same time—be
indexed and efficiently compressed with indexes based on LZ77 [65, 66, 67], run-length
compression of the Burrows-Wheeler Transform [77, 111], and grammar compression [18,



5.3. Indexes For Highly Repetitive Text Collections 99

19,20,115].

5.3.1 Related Work: RLBWT-, LZ-, and Grammar- Indexes

The first index tailored for highly repetitive sequences—the rlcsa—was proposed by Sirén
et al. [77]. The rlcsa—discussed in Section 2.4.2—is based on the run-length encoding
of the Ψ function and takes space proportional to the number r of equal-letter runs in
the Burrows-Wheeler transform, plus the suffix array sampling. The latter component is
the main reason why the rlcsa cannot achieve exponential compression while at the same
time offering polylogarithmic-time locate queries: a sampling factor of k takes n/k words
of space and supports locate queries in time proportional to k. A second drawback of
the rlcsa is that its space is dominated by a 2 log(n/r)-bits term: twice the space taken
by a run-length encoding of the Burrows-Wheeler transform. Despite this (slight) space
inefficiency, the rlcsa performs very well in practice (being very fast especially on count

queries).

Kreft and Navarro [65,66,67] partially solved these problems by proposing an index—
the LZ77-index—taking space proportional to the size z of the LZ77-compressed text.
The main drawbacks of the LZ77-index are that (i) it supports locate queries in time
quadratic with respect to the pattern length m and linear with respect to the parse height
h (see Definition 11), and (ii) it does not support count; the only way to count occurrences
is to locate them all. Moreover, in the LZ77 variant they consider (non self-overlapping
LZ77 phrases), h can be as large as

√
n so even locate can be inefficient on very repetitive

texts. Also in this case however (see Chapter 7), the index performs well in practice on
short patterns. This is due to a quite pessimistic worst-case analysis of the extraction cost
and to the fact that h is small on average.

Indexes based on Straight-Line Programs [18, 19, 20, 115] achieve exponential com-
pression and polylogarithmic-time queries. However, as discussed in Section 5.1, LZ77 is
inherently more powerful than grammar compression, which in practice translates to the
fact that grammar indexes are much bigger than LZ77 indexes.

An interesting compromise between LZ and grammar indexes is represented by the self-
index based on block trees proposed very recently by Navarro [86]. By combining ideas
from grammar and Lempel-Ziv compression, block trees achieve space proportional to
z log(n/z), i.e. close to Lempel-Ziv compression. Moreover, they support text extraction
in logarithmic time. The index described by Navarro [86] removes the h factor from
count/locate times of the LZ77-index while occupying slightly more space. One of its
drawbacks, however, remains the fact that query times are still quadratic in the pattern
length.

In this section, we propose two indexes for highly repetitive text collections solving
some of the problems raised above. Our first index—the s-rlbwt index—employs a new
sparsification technique in the encoding of the run-length Burrows-Wheeler transform
and achieves—modulo the suffix array sampling—optimal space with respect to a non-
indexed RLBWT representation. Our second index—the slz-rlbwt index—solves also the
problem related to the suffix array sampling by storing only one sample per LZ77 factor.
The slz-rlbwt takes space proportional to r+z and supports queries in logarithmic time
w.r.t. the dataset size and linear time w.r.t. pattern length.

To improve readability, we drop the (1+o(1)) multiplicative factor present in all space
analyses.



100 5. Compressed Computation: Recompression and Indexing

5.3.2 The s-rlbwt Index

Recall, from Section 2.4.2, that the rlcsa index has a r(2 log(n/r) + log σ)-bits leading
term in its space usage. However, a run-length encoded Burrows-Wheeler transform can
be implemented with a gap-encoded bitvector with r bits set (encoding run lengths) and a
string storing run heads. These structures take r(log(n/r) + log σ) bits of space (plus low-
order terms), i.e. r log(n/r) bits less than the above indexes. The question we address in
this section is, therefore: can we build an optimal-space (modulo the suffix array sampling)
run-length encoded BWT index?

In Theorem 28 we answer affirmatively to this question and present our first index for
highly repetitive text collections. Our idea is to apply sparsification to the main bitvector
storing lengths of all runs in the run-length encoded string of Section 2.3.3. We call our
index s-rlbwt (sparse RLBWT):

Theorem 28. The s-rlbwt (sparse RLBWT) is a full-text self-index taking

r log(n/r) + r log σ +O(r) + (n/k) log n

bits of space and supporting:

• Count in O
(
m(log n

r + log σ) logε n
)

time

• Locate in O
(
(m+ occ · k)(log n

r + log σ) logε n
)

time, and

• Extract in O
(
(m+ k)(log n

r + log σ) logε n
)

time

For any constant ε > 0.

Proof. we build the rlbwt index of Theorem 9 using the Elias-Fano indexable dictionary
described in Theorem 2.1 of [94] to encode gap lengths. We recall that this indexable
dictionary encodes a length-n bitvector with r bits set in r log(n/r) + O(r) bits and
supports rank, select1, and access queries in O(log(n/r)) time. We moreover apply
sparsification to the main bitvector Vall storing lengths of all runs (refer to Section 2.3.3
for a definition of Vall), i.e. we store just one out of 1/δ bits set, where 0 < δ ≤ 1. With
this strategy, we are still able to answer all queries on the RLBWT by using the vectors Vc
to reconstruct the positions of the missing ones in Vall, using r

(
log(n/r)+δ log( nrδ )+log σ

)

bits of space, but query times are multiplied by a factor 1/δ. 2

We choose δ = log−ε n for any constant ε > 0. As a result, δ · r log( nrδ ) = o(r log(n/r)).
The bounds of the theorem follow.

In our implementation [101] we fix δ = 1/8. We used sdsl’s sd vector [43] for
the Elias-Fano gap-encoded bitvectors. sd vector implements the results described by

2The idea is the following. Let V ′all be the bitvector obtained from Vall by keeping only one out of
1/δ bits set. To support rank1(i) on the original Vall, we first perform rank1(i) on V ′all. The result is
multiplied by 1/δ to obtain the rank j of the run (among all equal-letter runs) marked on V ′all with a bit
set that immediately precedes position i. We then read at most 1/δ run heads in H starting from position
j and compute their lengths by performing a select1 on bitvectors VH[j], VH[j+1], ... using as arguments of
select1 the values H.rankH[j](j), H.rankH[j+1](j + 1), ..., respectively. We accumulate these lengths on
top of V ′all.select1(j), stopping as soon as the accumulated length reaches position i. Finally, we return j
plus the number of run heads H[j], H[j + 1], ... seen until that point. The solution for answering select1
on Vall follows the same logic and we do not report it here.



5.3. Indexes For Highly Repetitive Text Collections 101

Okanohara and Sadakane [92] and uses r log(n/r) + 2r bits of space to encode a length-
n bitvector with r bits set. As a result, in our implementation the hidden constant
multiplying r in Theorem 28 is equal to 2. Theoretical query times are slightly higher
than those of [94] for big values of r, but in practice are very fast (see [92] for full details).
Excluding the suffix array sampling, the size of our index turns out to be almost always
much smaller than that of the rlcsa [111] index (see Chapter 7).

5.3.3 The slz-rlbwt Index

There is a potential problem with the s-rlbwt index described in the previous section,
namely, the suffix array sampling. Note that both query times and space of the index
depend on the sampling rate k. For small k, if the text is very repetitive then the suffix
array sampling could turn out to be exponentially bigger than the run-length encoded
BWT. In order to make the index size always proportional to r, one could choose k = n/r.
With this solution, the index could achieve exponential compression with small values of
r; however, in such cases running times would become prohibitive (being the term k = n/r
close to n).

We need to find a better way to compress the suffix array sampling. The idea behind
the result discussed in this section is to combine techniques from FM- and LZ-indexes
in a single index in order to achieve this goal. We combine a RLBWT with a suffix
array sampling based on LZ77; the result is an index whose size depends on both r
and z, and whose query times are always polylogarithmic with respect to the dataset
size, regardless of the compression rate. Three variants of this idea have been proposed
in papers (v) and (vi): flz-rlbwt (full index), blz-rlbwt (bidirectional index), and
slz-rlbwt (sparse index). In this thesis we focus only on the third variant, which is by
far the most space-efficient while still supporting very fast queries. In this section we first
present our slz-rlbwt index and then—for completeness—give a quick overview of the
other two variants.

We start by introducing a technique to sparsify the LZ77 parsing. Intuitively, the LZ77
parsing of a repetitive text collection T1T2...Tk (T2, ..., Tk being variants of T1) is much
denser (i.e. presents many small phrases) inside T1 than it is in T2, ..., Tk. This suggests
that excluding (big enough) contiguous regions from the parse (i.e. not outputting phrases
inside these regions) should reduce the number of phrases in the denser regions of the
collection. More formally:

Definition 18. LZ77-d parsing. Let d ≥ 0. Consider the following generalization of
LZ77, denoted here as LZ77-d. We factor the text T as X1Y1X2Y2...XzdYzd, where zd
is the size of the parse, Y1, ..., Yzd ∈ Σd, and Xi is the longest prefix of XiYi...XzdYzd
that appears at least twice in X1Y1X2Y2...Xi. In the case d = 0, we assume the text is
(virtually) preceded by all characters in Σ

Note that the version of LZ77 defined in Definition 2 corresponds to LZ77-1. Many
works in the literature use, instead, the variant LZ77-0. On texts of practical interest,
the LZ77-d parse produces a dramatically smaller parse than LZ77-0: in our experiments
on twelve repetitive text collections (see Chapter 7), z512 was on average more than ten
times smaller than z0. We can now present our second index for highly repetitive text
collections:



102 5. Compressed Computation: Recompression and Indexing

Theorem 29. The slz-rlbwt (sparse Lempel-Ziv RLBWT) is a full-text self-index taking

3zd log n+ zd log(n/zd) + r (log(n/r) + log σ +O(1))

bits of space and supporting:

• Count in O(m(log(n/r) + log σ) logε n) time,

• Locate in O ((occ+ 1) · (m+ d) · (log(n/r) + log σ) logε n+ (occ+ 1) log n) time, and

• Extract in O((m+ d) · (log(n/r) + log σ) logε n+ log zd + (h+ 1) · log(n/zd)) time

For any constant ε > 0 and integer d ≥ 0. zd is the number of phrases of the LZ77-d
parse. h is the parse height.

Proof. Let us first define the index using the LZ77-0 parse. We keep RLBWT+(
←−
T ) (the

sparse variant used in the s-rlbwt index) and use it to find the RLBWT range of the
(reversed) query pattern P ∈ Σm. We moreover sample the suffix array at the end of LZ77
factors. By definition, primary pattern occurrences cross a LZ77 factor. To locate primary
occurrences, we can therefore forward-extract at most m characters from each position in
the RLBWT range (forward extraction is implemented with select queries on RLBWT,
see Section 2.3.3), stopping as soon as we find a suffix array sample (if there is one).
Extractingm characters per occurrence takes overallO((occ+1)·m·(log(n/r)+log σ) logε n)
time. In this phase, we need a gap-encoded bitvector ENDT of z log(n/z) + O(z) bits
marking the last character of each LZ phrase on the text, a gap-encoded bitvector ENDF

of z log(n/z) +O(z) bits marking the last character of each LZ phrase on the F column of

RLBWT (
←−
T ), and a permutation P of the set {0, . . . , z−1} connecting corresponding bits

set in ENDF and ENDT . P can be implemented with a wavelet tree (Section 2.3.4) so
that it takes z log z(1 +o(1)) bits and supports operations (apply the permutation/inverse
permutation to a i ∈ {0, . . . , z − 1}) in O(log z) time. When finding a bit set on the
F column of the BWT, we use P to find the corresponding bit set on ENDT , therefore
mapping the F position on the text (O(log z) time for each primary occurrence). Finding
primary occurrences takes, therefore, O((occ+1)·m·(log(n/r)+log σ) logε n+(occ+1) log z)
time.

After locating primary occurrences, we use a 2-sided range data structure to find all
secondary occurrences as described in Section 2.4.3. Recall (from Section 2.4.3) that to
implement this component we need a gap-encoded (Elias-Fano) bitvector SOURCES of
z log(n/z) +O(z) bits of space marking with a bit set the first position of phrases sources
on the text (i.e. locations from where phrases are copied), a succinct bitvector of z bits
to mark duplicate sources, and a wavelet tree of z log n bits to store the actual 2D points
(supporting operations in O(log n) time). Overall, finding secondary occurrences takes
O((occ+ 1) log n) time.

It is easy to see that the above techniques still work if we replace LZ77-0 with LZ77-d,
d > 0, provided that (i) we sample the suffix array at the end of each Xi, (ii) we build the
2-sided geometric structure on the (sources of the) phrases X1, ..., Xzd , and (iii) during
locate we extract—in addition to the m pattern characters—also d characters before each
pattern occurrence in order to locate phrases that start inside one of the strings Yi. The
bounds for count/locate of our theorem follow.



5.3. Indexes For Highly Repetitive Text Collections 103

To conclude, we need to show how to support extract queries. To extract T [i, . . . , i+
m− 1], we distinguish three cases. (i) if T [i, . . . , i+m− 1] overlaps a bit set on ENDT ,
then we find the corresponding bit set in ENDF using the permutation P (O(log zd)

time) and extract the m characters from RLBWT+(
←−
T ) using LF and FL queries to move

forward/backwards in the text, respectively. (ii) If T [i, . . . , i+m− 1] starts inside one of
the strings Yj of the LZ77-d parse (see Definition 18), then we find the bit set in ENDT

that immediately precedes string Yj . Note that this bit set is within d positions from T [i].
We find the corresponding bit set in ENDF using the permutation P and extract at most
m + d characters from the RLBWT using LF queries to move forward in the text. (iii)
T [i, . . . , i + m − 1] is contained in one of the strings Xj , i.e. is entirely copied from a
previous text location. Then—using bitvector ENDT—we locate the rank and starting
location in T of phrase Xj . We keep zd integers of log zd bits each to map each phrase
rank to a bit set in SOURCES, indicating from where the phrase is copied in the text.
By using these informations, in O(log(n/zd)) time (required to answer queries on ENDT )
we can jump from T [i, . . . , i+m− 1] to the location T [i′, . . . , i′+m− 1], with i′ < i, from
where T [i, . . . , i+m− 1] is copied. Note that we need to jump at most h times—h being
the parse height—until we fall into one of the cases (i) or (ii). The complexity of extract
follows.

As for the s-rlbwt index, in our implementation of the slz-rlbwt index [102] we fix
δ = 1/8. The hidden constant multiplying r in Theorem 29 is equal to 2 (we use the
same RLBWT implementation of the s-rlbwt index). In our experiments (see Chapter
7), the size of the slz-rlbwt index was—on average—1.1 times larger than that of the
most space-efficient variant of the LZ77 index described by Kreft and Navarro [67]: this
proves that RLBWT indexes can be as space-efficient as LZ77 indexes on repetitive text
collections. Our index, however, supports much (orders of magnitude) faster count queries
(but slower locate) than the LZ77 index.

Enhancing memory usage during locate Note that, in order to locate occurrences,
we need to recursively follow substring-copy chains starting from primary occurrences.
This process naturally defines a forest of trees rooted in primary occurrences whose leaves
are pattern occurrences that are no more copied forward in the text. Depending on
how we visit these trees, the memory usage of our index during locate queries can vary
dramatically. If the trees are BFS-visited, then the memory usage (on top of the index) is
O(occ) words. If, instead, the trees are DFS-visited (streaming to disk found occurrences),
the memory usage is O(h) words, h being the LZ77 parse height. On very repetitive
texts occ can be very large, so the second strategy should be preferred. Our slz-index

implements DFS-visit of pattern occurrences. In Chapter 7 we confirm that this strategy
is very effective also in practice.

Variants We give a quick overview of the other two indexes combining LZ77 and RLBWT
and described in papers (v) and (vi). In the first index, named flz-rlbwt (full) and
described in paper (v), we consider all ways of breaking the pattern in a prefix and a suf-

fix and (i) use RLBWT+(
←−
T ) to find the lexicographic order the reversed pattern prefix

among the suffixes of the reversed text that begin at LZ phrase boundaries, and (ii) use
RLBWT+(T ) plus a structure encoding the subset of suffix tree nodes corresponding to
LZ phrases to find the lexicographic order the pattern suffix among all (forward) LZ77



104 5. Compressed Computation: Recompression and Indexing

factors. This strategy is equivalent to considering only the last phrase border in a pat-
tern occurrence (in the case the occurrence contains more than one phrase borders); as a
result, we report each pattern occurrence just once. These ranges are used—as described
in Section 2.4.3—to retrieve all pattern primary occurrences (i.e. occurrences spanning
a phrase border) by querying a 4-sided geometric range data structure. Secondary oc-
currences (i.e. occurrences entirely contained in a phrase) are retrieved—as described in
Section 2.4.3—by querying a 2-sided geometric range data structure storing all phrases
sources and end-points. In the second variant, dubbed blz-rlbwt (bidirectional), we drop

RLBWT+(
←−
T ) and simulate it using RLBWT+(T ) and bidirectional search [68,108].

In practice (see paper (vi)), the flz-rlbwt index is fast but too memory consuming.

The blz-rlbwt index partially solves this problem by dropping RLBWT+(
←−
T ), but still

has to keep in memory heavy geometric data structures (the constant factors of these
structures are not negligible). Moreover, bidirectional search increases locate query times,
which become quadratic in the pattern length. As a result, in practice the blz-rlbwt index
is prohibitively slow on locate queries while not improving by much the space occupancy
of the full index.

Construction from a compressed file In this paragraph we prove that we can build
our slz-rlbwt index in asymptotically optimal working space:

Theorem 30. We can build the slz-rlbwt index in O(n(log r+log z)) time and O(r+z)

words of space taking as input any of the following: LZ77(T ), RLBWT (T ), RLBWT (
←−
T ),

or the streamed text.

Proof. Using the algorithms of Section 5.2, we can retrieve RLBWT+(
←−
T ) in O(n(log r+

log z)) time and O(r + z) words of space starting from any of the above text represen-
tations. To compute LZ77-d(T), we can easily adapt the strategy described in Section
4.3: we just need—in Algorithm 14—to skip d characters after a phrase ends before
starting searching the next phrase in the RLBWT index. Building bitvector ENDF re-

quires navigating RLBWT+(
←−
T ) (with LF queries) and inserting phrase endpoints in a

dynamic gap-encoded bitvector (O(n log r + zd log zd) time). Analogously, ENDT can be
built by scanning LZ77-d factors in text order. Permutation P can be built by scan-

ning one more time RLBWT+(
←−
T ) with LF queries, keeping track (in a vector of pairs)

of corresponding bits set in ENDF and ENDT , and finally building the wavelet tree
(O(n(log r+ logzd) + zd log zd) time). Finally, building the 2-sided geometric range struc-
ture requires first sorting LZ77-d factors with respect to their source field, computing the
gap-encoded bitvector mapping text positions to [0, zd), computing the bitvector marking
duplicate positions, and then inserting the computed points in the wavelet tree geometric

structure (O(zd log n) time). In the end, if needed we can turn RLBWT+(
←−
T ) and the

gap-encoded bitvectors to static (and more space-efficient) data structures.

In Figure 5.3 we contextualize Theorem 30 in our framework of algorithmic tools
(Figure 1.1).



5.3. Indexes For Highly Repetitive Text Collections 105

T LZ77(T) slz-rlbwt

Hk-BWT(T) RLBWT(T) s-rlbwt

|LZ77(T )|+
|RLBWT (T )| |RLBWT (T )|

|T |Hk(T ) |RLBWT (T )|

|T |H0(T )

|T |Hk(T )

|LZ77(T )|+
|RLBWT (T )|

|RLBWT (T )| + |T |/d

slz-rlbwt index construction

1

Figure 5.3: Our slz-rlbwt index can be constructed taking as input LZ77(T) and RLBWT(T).
In turn, these two compressed representations can be computed in repetition-aware space with the
algorithms of Sections 3.3 and 4.3.



106 5. Compressed Computation: Recompression and Indexing



6
From Theory to Practice: the

DYNAMIC library

Many algorithms described in the literature work within provably-optimal running times
and working space, but in practice they are based on too complicated data structures
which prevent them to be competitive in practice. In the experimental world, asymptotic
analysis loses some of its descriptive power and, quite often, is not able to accurately
predict what the real performance of an algorithm will be. In this sense, it is not uncommon
to see implementations of O(n log n)-time algorithms running faster than their linear-time
counterparts. This is due to several factors that in practice play an important role but in
theory are often poorly modeled: cache locality, branch prediction, disk accesses, context
switches, memory fragmentation1, and so on. A good implementation must take into
account all these factors (e.g. through code profiling) in order to be practical.

6.1 Related Work

In recent years, several libraries implementing static data structures have been proposed,
namely: sdsl [43] (probably the most used, comprehensive, and tested), pizza&chili [37]
(compressed indexes), sux [120], succinct [95], BWTIL [96], libcds [15]. These libraries
proved that static succinct data structures can be very practical in addition to being
theoretically appealing. On the dynamic side, little work has been done. Dynamic data
structures represent a challenge in practice, being based on components that are often
cache-inefficient and memory-consuming (e.g. self-balancing trees) and cause severe mem-
ory fragmentation due to the numerous allocations and de-allocations introduced by dy-
namism (this effect can however be alleviated through appositely designed memory allo-
cators). An interesting and promising (but still under development) step in this direction
is represented by Memoria [113], a C++14 framework providing general purpose dynamic
data structures. Other libraries are also still under development (ds-vector [25]) or have
been published but the code is not available [21, 62]. To the best of our knowledge, the
only working implementation of a succinct dynamic bitvector is [42]: a C++ container-like
succinct data structure for storing a vector of bits with fast appending on both sides and

1Memory fragmentation is a scenario arising when data is allocated in multiple non-contiguous blocks
interleaved by small empty segments of memory. Such small segments are unallocated but unusable for
most typical scenarios (e.g. because they are too small), so are—to all effects—unusable. As we will see
in Chapter 7, with dynamic data structures memory fragmentation can introduce overheads amounting to
24% of the allocated memory in the worst case.



108 6. From Theory to Practice: the DYNAMIC library

fast insertion in the middle.

To sum up, the experimental community still lacks a stable and open-source library
providing the most useful succinct dynamic data structures needed to implement sev-
eral space-efficient indexing and compression algorithms (such as the ones presented in
Chapters 3 and 4): dynamic partial sums, gap-encoded/succinct bitvectors, compressed
wavelet trees, run-length encoded strings. In view of this gap between theoretical and
practical advances in the field, in this chapter we present DYNAMIC [97]: a C++11 library
providing implementations of the above mentioned succinct dynamic data structures. Our
library has been extensively profiled and tested, and offers structures whose performance
are provably close to the theoretical lower bounds (in particular, they approach succinct-
ness and logarithmic queries). The core of the library is a searchable partial sum data
structure with inserts (SPSI). This structure is used as building block for all other compo-
nents: gap-encoded bitvectors (gaps are encoded as SPSI integers), succinct bitvectors (a
binary SPSI), wavelet trees (fixed-length/gamma/Huffman encoding), run-length strings,
and FM-indexes (run-length/entropy-compressed) supporting left-extension of the text.
We conclude the chapter by describing how the algorithms of Chapters 3 and 4 have been
implemented with DYNAMIC, including a detailed analysis of their space usage.

6.2 The Core: Searchable Partial Sums with Inserts

Recall, from Section 3.3.1, that the Searchable Partial Sums With Inserts (SPSI) problem
asks for a data structure PS to maintain a sequence s1, . . . , sm of non-negative k-bits
integers supporting the following operations:

• PS.sum(i) =
∑i

j=1 sj ;

• PS.search(x) is the smallest i such that
∑i

j=1 sj > x;

• PS.update(i, δ): update si to si + δ. δ can be negative as long as si + δ ≥ 0;

• PS.insert(i): insert 0 between si−1 and si (if i = 0, insert in first position).

In this section we describe a practical variant of the partial sum data structure de-
scribed in Section 3.3.1. Our practical solution offers space-time tradeoffs provably close
to those of the best theoretical solutions described in the literature (which are often too
complicated to be implemented in practice).

6.2.1 Data Structure

We employ B-trees (instead of red-black trees as done in Section 3.3.1). This choice
improves cache-efficiency in that B-trees allow using a bigger fanout with respect to red-
black trees (bigger internal nodes reduce tree height and can fit in a cache line). We use
a leaf size l (i.e. number of integers stored in each leaf) always bounded by

0.5 logm ≤ l ≤ logm

and a node fanout f ∈ O(1). f has to be chosen accordingly with the cache line size; bigger
f reduces cache misses and tree height. See Section 6.3 for a discussion on the maximum



6.2. The Core: Searchable Partial Sums with Inserts 109

leaf size and f values used in practice in our implementation. Letting l = c · logm being
the size of a particular leaf, we call the coefficient 0.5 ≤ c ≤ 1 the leaf load.

In order to improve space usage even further while still guaranteeing very fast oper-
ations, integers in the leaves are packed contiguously in a word array and, inside each
leaf L, we assign to each integer the bit-size of the largest integer stored in L. Whenever
an integer overflows the maximum size associated to its leaf (after an update operation),
we re-allocate space for all integers in the leaf. This operation takes O(logm) time, so
it does not asymptotically increase the cost of update operations. Crucially, in each leaf
we allocate space only for the integers actually stored inside it, and re-allocate space for
the whole leaf whenever we insert a new integer or we split the leaf. With this strategy,
we do not waste space for half-full leaves2. Note moreover that, since the size of each leaf
is bounded by Θ(logm), re-allocating space for the whole leaf at each insertion does not
asymptotically slow down insert operations.

6.2.2 Theoretical Guarantees

Let us denote with m/ logm ≤ L ≤ 2m/ logm the total number of leaves, with Lj ,
0 ≤ j < L, the j-th leaf of the B-tree (using any leaf order), and with I ∈ Lj an integer
belonging to the j-th leaf. The total number of bits stored in the leaves of the tree is

∑

0≤j<L

∑

I∈Lj
max bitsize(Lj)

where max bitsize(Lj) = maxI∈Lj (bitsize(I)) is the bit-size of the largest I ∈ Lj , and
bitsize(x) = blog2 xc+ 1 is the number of bits required to write number x in binary. The
above quantity is equal to

∑

0≤j<L
cj · logm ·max bitsize(Lj)

where 0.5 ≤ cj ≤ 1 is the j-th leaf load. Since leaves loads are always upper-bounded by
1, the above quantity is upper-bounded by

logm
∑

0≤j<L
max bitsize(Lj)

which, in turn, is upper-bounded by

logm
∑

0≤j<L
bitsize


∑

I∈Lj
I


 ≤ logm

∑

0≤j<L
1 + log2


1 +

∑

I∈Lj
I




In the above inequality, we use the upper-bound bitsize(x) ≤ 1 + log2(1 + x) to deal with
the case x = 0. Let M = m+

∑m
i=1 si = m+

∑
0≤j<L

∑
I∈Lj I be the sum of all integers

stored in the structure, plus m. From the concavity of log and from L ≤ 2m/ logm, it can
be derived that the above quantity is upper-bounded by

2m · (log(M/m) + log logm+ 1) (6.1)

To conclude, we store O(1) pointers/counters of O(logM) bits each per leaf and internal
node. We obtain:

2In practice, to speed up operations we allow a small fraction of the leaf to be empty



110 6. From Theory to Practice: the DYNAMIC library

Theorem 31. Let s1, . . . , sm be a sequence of m non-negative integers and M = m +∑m
i=1 si. The partial sum data structure implemented in DYNAMIC takes at most

2 ·m (log(M/m) + log logm+O(logM/ logm))

bits of space and supports sum, search, update, and insert operations on the sequence
s1, . . . , sm in O(logm) time.

In our experiments we observed that—even taking into account memory fragmentation—
the bit-size of our dynamic partial sum structure is well approximated by function 1.19 ·
m (log(M/m) + log logm+ logM/ logm). See Chapter 7 for full details.

6.3 Plug and Play with Dynamic Structures

The SPSI structure described in the previous section can be used as building block to
obtain all dynamic structures used in our algorithms. In our library, the SPSI structure’s
type name is spsi and is parametrized on 3 template arguments: the leaf type (here, the
type packed vector is always used3), the leaf size and the node fanout. DYNAMIC defines
two SPSI types with two different combinations of these parameters:

typedef sps i<packed vector ,256 ,16> packed sps i ;
typedef sps i<packed vector ,8192 ,16> s u c c i n c t s p s i ;

The reasons for the particular values chosen for the leaf size and node fanout will be
explained later. We use these two data types as basic component in the definition our
structures. To improve readability, in the following we drop the (1 + o(1)) multiplicative
term present in all space analyses.

6.3.1 Gap-Encoded Bitvectors

DYNAMIC implements gap-encoded bitvectors using a SPSI to encode gap lengths. Recall,
from Section 3.3.2, that this solution permits to support also delete0 operations (which
require just to decrement one of the SPSI’s counters). DYNAMIC’s name for the dynamic
gap-encoded bitvector class is gap bitvector. The class is a template on the SPSI type.
We plug packed spsi in gap bitvector as follows:

typedef gap b i tvec to r<packed sps i> gap bv ;

and obtain:

Theorem 32. Let B ∈ {0, 1}n be a bit-sequence with b bits set. The dynamic gap-encoded
bitvector gap bv implemented in DYNAMIC takes at most

2 · b (log(n/b) + log log b+O(log n/ log b))

bits of space and supports rank, select, access, insert, and delete0 operations on B
in O(log b) time.

3packed vector is simply a packed vector of k-bits integers supporting all SPSI operations in linear
time



6.3. Plug and Play with Dynamic Structures 111

In our experiments, the optimal node fanout for the SPSI stucture employed in this
component turned out to be 16, while the optimal leaf size 256 (these values represented a
good compromise between query times and space usage). In our experiments we observed
that the bit-size of our dynamic gap-encoded bitvector is well approximated by function
1.19 · b (log(n/b) + log log b+ log n/ log b). See Chapter 7 for full details.

6.3.2 Succinct Bitvectors and Compressed Strings

Let n be the bitvector length. Dynamic succinct bitvectors can be implemented using a
SPSI where all m = n stored integers are either 0 or 1. At this point, rank operations
on the bitvector correspond to sum on the partial sum structure, and select operations
on the bitvector can be implemented with search on the partial sum structure4. access

and insert operations on the bitvector correspond to exactly the same operations on the
partial sum structure. Note that in this case we can accelerate operations in the leaves by a
factor of log n by using constant-time built-in bitwise operations such as popcount, masks
and shifts. This allows us to use bigger leaves containing Θ(log2 n) bits, which results in a
total number of internal nodes bounded by O(n/ log2 n). The overhead for storing internal
nodes is therefore of o(n) bits. Moreover, since in the leaves we allocate only the necessary
space to store the bitvector’s content (i.e. we do not allow empty space in the leaves), it
easily follows that the dynamic bitvector structure implemented in DYNAMIC takes n bits
of space and supports all operations in O(log n) time.

In our experiments, the optimal node fanout for the SPSI stucture employed in the
succinct bitvector structure turned out to be 16, while the optimal leaf size 8192. DYNAMIC’s
name for the dynamic succinct bitvector is succinct bitvector. The class is a template
on the SPSI type. DYNAMIC defines its dynamic succinct bitvector type as:

typedef s u c c i n c t b i t v e c t o r<s u c c i n c t s p s i> suc bv ;

We obtain:

Theorem 33. Let B ∈ {0, 1}n be a bit-sequence. The dynamic succinct bitvector data
structure suc bv implemented in DYNAMIC takes n bits of space and supports rank, select,
access, and insert operations on B in O(log n) time.

In our experiments we observed (see Chapter 7) that the size of our dynamic succinct
bitvector is always upper-bounded by 1.23 · n bits. The 23% overhead on top of the
optimal size comes mostly from memory fragmentation (16%). The remaining 7% comes
from succinct structures on top of the bit-sequence.

Dynamic compressed strings are implemented with a wavelet tree built upon dy-
namic succinct bitvectors (see Section 2.3.2). We explicitly store the topology of the
tree (O(|Σ| log n) bits) instead of encoding it implicitly in a single bitvector. This choice
is space-inefficient for very large alphabets, but reduces the number of rank/select op-
erations on the bitvector(s). DYNAMIC’s compressed strings (wavelet trees) are a template
on the bitvector type. DYNAMIC defines its dynamic string type as:

typedef wt st r ing<suc bv> wt s t r ;

When using Huffman topology, the implementation satisfies:

4Actually, search permits to implement only select1. select0 can however be easily simulated with
the same solution used for search by replacing each integer x ∈ {0, 1} with 1−x at run time. This solution
does not increase space usage.



112 6. From Theory to Practice: the DYNAMIC library

Theorem 34. Let S ∈ Σn be a string with zero-order entropy equal to H0. The Huffman-
compressed dynamic string data structure wt str implemented in DYNAMIC takes

n(H0 + 1) +O(|Σ| log n)

bits of space and supports rank, select, access, and insert operations on S in average
O((H0 + 1) log n) time.

The user can choose at construction time whether to use a Huffman, fixed-size, or
gamma encoding for the alphabet. Gamma encoding is useful when the alphabet size is
unknown at construction time. In the case a fixed-size encoding is used (i.e. dlog2 |Σ|e bits
per character), the structure takes n log |Σ|+O(|Σ| log n) bits and supports all operations
in O(log |Σ| · log n) time.

Run-Length Encoded Strings

In our library, run-length compressed strings are a template on a gap-encoded bitvector
type (encoding run lengths) and on a dynamic string type (encoding run heads). We plug
the structures of the previous sections in an implementation of the run-length encoded
dynamic string described in Section 2.3.3 (template class rle string) as follows:

typedef r l e s t r i n g <gap bv , wt str> r l e s t r ;

and obtain

Theorem 35. Let S ∈ Σn be a string with rS equal-letter runs. The dynamic run-length
encoded string data structure rle str implemented in DYNAMIC takes

rS · (4 log(n/rS) + log |Σ|+ 4 log log rS +O(log n/ log rS)) +O(|Σ| log n)

bits of space and supports rank, select, access, and insert operations on S in O(log |Σ|·
log rS) time.

6.3.3 Dynamic FM-Indexes

We can obtain a dynamic FM-index by encoding the Burrows-Wheeler transform with any
dynamic string data structure and adding a sparse dynamic vector storing the suffix array
sampling on top of it. The dynamic sparse vector can be implemented with a dynamic
bitvector and a dynamic vector of integers (e.g. a SPSI). In DYNAMIC, the BWT is a
template class parametrized on the L-column and F-column types. For the F column, a
run-length encoded string is always used. DYNAMIC defines two types of dynamic Burrows-
Wheeler transform structures (wavelet-tree/run-length encoded):

typedef bwt<wt str , r l e s t r > wt bwt ;
typedef bwt<r l e s t r , r l e s t r > r l e bwt ;

Dynamic sparse vectors are implemented inside the FM index class using a dynamic
bitvector marking sampled BWT positions and a dynamic sequence of integers (a SPSI)
storing non-null values. We combine a Huffman-compressed BWT with a succinct bitvec-
tor and a SPSI:

typedef fm index<wt bwt , suc bv , packed sps i> wt fmi ;

and obtain



6.4. Compression Algorithms, in Practice 113

Theorem 36. Let S ∈ Σn be a string with zero-order entropy equal to H0, P ∈ Σm

a pattern occurring occ times in T , and k the suffix array sampling rate. The dynamic
Huffman-compressed FM-index wt fmi implemented in DYNAMIC takes

n(H0 + 2) +O(|Σ| log n) + (n/k) log n

bits of space and supports:

• access to BWT characters in average O((H0 + 1) log n) time

• count in average O(m(H0 + 1) log n) time

• locate in average O((m+ occ · k)(H0 + 1) log n) time

• text left-extension in average O((H0 + 1) log n) time

If a plain alphabet encoding is used, all (H0 +1) terms are replaced by log |Σ| and times
become worst-case.

If, instead, we combine a run-length compressed BWT with a gap-encoded bitvector
and a SPSI as follows:

typedef fm index<r l e bwt , gap bv , packed sps i> r l e f m i ;

we obtain

Theorem 37. Let S ∈ Σn be a string whose BWT has r runs, P ∈ Σm a pattern occurring
occ times in T , and k the suffix array sampling rate. The dynamic run-length compressed
FM-index rle fmi implemented in DYNAMIC takes

r · (4 log(n/r) + log |Σ|+ 4 log log r +O(log n/ log r)) +O(|Σ| log n) + (n/k) log n

bits of space and supports:

• access to BWT characters in O(log |Σ| · log r) time

• count in O(m · log |Σ| · log r) time

• locate in O((m+ occ · k)(log |Σ| · log r)) time

• text left-extension in O(log |Σ| · log r) time

The suffix array sample rate k can be chosen at construction time.

6.4 Compression Algorithms, in Practice

In this section we describe how the algorithms of Chapters 3 an 4 have been implemented
using DYNAMIC, including a detailed analysis of their space usage. As done in the previous
section, to improve readability we omit the (1 + o(1)) multiplicative term present in all
space analyses.



114 6. From Theory to Practice: the DYNAMIC library

6.4.1 cw-bwt: High-Order Compressed BWT

Recall that cw-bwt maintains a de Bruijn automaton of degree k and stores, for each
automaton’s state, a partial sum structure and a dynamic zero-order compressed string.
In DYNAMIC, the automaton is implemented with two vectors of size σk storing, respectively,
partial sum structures and dynamic zero-order compressed strings. The length-k strings
corresponding to each automaton’s state are encoded implicitly in the indexes—seen as
integers in base σ— of the two arrays. The i-th partial sum structure is implemented—as
described in Section 3.2—with a packed B-tree storing σi integers whose maximum size
is that of context i, where σi is the effective alphabet of the i-th context. Since we use
packed computation, this strategy speeds up operations considerably if the context size is
small (because more integers fit in a machine word). Overall, all partial sums structures
take O(σk+1 log n) bits of space.

Zero-order compressed strings are implemented with the structure of Theorem 34.
Since each string represents a BWT context, we achieve high-order compression: overall,
the dynamic strings take (nHk + n) bits of space. Note that in DYNAMIC we do not
implement the dynamic bitvector—guaranteeing constant-time operations on strings of
size wO(1)—described in Section 3.2 (this bitvector has however been implemented in the
library [42]). This choice gives—in theory—a better worst-case time (w.r.t the algorithm
described in the original paper), but a worse average-case time (see below). In practice,
the solution using DYNAMIC’s data structures is faster than the original one, which has also
been implemented and can be found in the BWTIL library [96].

In order to find the optimal context size k (which should be close to k = logσ(n/ log2 n)−
1, according to Section 3.2), we scan multiple times a (small enough) prefix of the text and
estimate the overhead introduced by the partial sums for k = 0, 1, 2, . . . . This procedure
stops as soon as this overhead exceeds 0.1 · n log σ bits. We obtain:

Theorem 38. The cw-bwt algorithm implemented in DYNAMIC computes the Burrows-
Wheeler transform of a text T ∈ Σn within the following bounds:

• n(Hk + 1) + o(n log |Σ|) +O(|Σ| log n) bits of space

• O(n(Hk + 1) log log n) average-case time

• O(n(Hk + 1) log n) worst-case time

Where Hk is the k-th order entropy of T and k = min{1, logσ(n/ log2 n)− 1}

In our implementation, the context size k must be at least 1 for technical reasons. The
average-case time comes from the observation that, in the average case, each context’s size
is logO(1) n ≤ wO(1). While in this case the dynamic bitvector of Section 3.2 (implemented
in [42]) guarantees constant-time operations, DYNAMIC’s bitvector supports operations in
logarithmic time w.r.t. the bitvector length, i.e. O(log logO(1) n) = O(log log n) time in
the average case.

6.4.2 rle-bwt: Run-Length Compressed BWT

DYNAMIC’s algorithm building the BWT in run-compressed space implements the BWT
construction algorithm of Section 2.5 using a run-length BWT implemented with the
structure of Theorem 35. We obtain:



6.4. Compression Algorithms, in Practice 115

Theorem 39. The rle-bwt algorithm implemented in DYNAMIC builds the Burrows-Wheeler
transform of a text T ∈ Σn within the following bounds:

• r · (4 log(n/r) + log |Σ|+ 4 log log r +O(log n/ log r)) +O(|Σ| log n) bits of space

• O(n log r log |Σ|) worst-case time

Where r is the number of equal-letter runs in the Burrows-Wheeler transform of T .

6.4.3 h0-lz77: Zero-Order Compressed LZ77

Recall that our algorithm computing LZ77 in zero-order compressed working space (see
Section 4.2) requires just a zero-order compressed FM-index supporting left-extension of
the text. To this end, in DYNAMIC we use the FM index of Theorem 36 with default
sampling rate k = 256 (which can be considered Θ(logσ n log log n)—i.e. the rate chosen
in Section 4.2—for small σ and all practical values of n). This yields:

Theorem 40. The h0-lz77 algorithm implemented in DYNAMIC computes the LZ77 fac-
torization of a text T ∈ Σn within the following bounds:

• n(H0 + 2) + o(n log |Σ|) +O(|Σ| log n) bits of space

• O(n(H0 + 1) log n · log log n) worst-case time

Where H0 is the zero-order entropy of T .

The multiplicative factor of (H0 +1) log log n in running times comes from the fact that
our dynamic string is slower than the one (not implemented) used in Section 4.2 (which
supports all operations in O(log n/ log log n) time).

6.4.4 rle-lz77: Run-Length Compressed LZ77

Our two algorithms to compute LZ77 with a run-length compressed BWT (Section 4.3)

share a RLBWT data structure over
←−
T implemented with the run-length string of Theorem

35.

Our first algorithm rle-lz77-1 augments the RLBWT with a map SA associating a
(sparse) dynamic vector SA[c] of suffix array samples to each c ∈ Σ. Each SA[c] is imple-
mented with a gap-encoded bitvector (Theorem 32) marking BWT positions containing
character c and a suffix array sample, plus a SPSI (Theorem 31) storing the actual samples.
Overall, the |Σ| gap-encoded bitvectors span σ ·n positions and contain at most 2r bits set.
This yields an overall space occupancy of 4r·(log(n/r) + log σ + log log r +O(log n/ log r))
bits for these components. The SPSI structures store overall at most 2r integers in
the range [0, n) (total sum: at most M = 2rn). Plugging these values in the struc-
ture of Theorem 31, we obtain that the overall size of the SPSI structures is at most
4r · (log n+ log log r +O(log n/ log r)) bits. Table 6.1 recapitulates the space of all data
structures used by rle-lz77-1.

Adding up all these terms, we obtain:

Theorem 41. The rle-lz77-1 algorithm implemented in DYNAMIC computes the LZ77
factorization of a text T ∈ Σn within the following bounds:



116 6. From Theory to Practice: the DYNAMIC library

r log n r log(n/r) r log |Σ| r log log r r log n/ log r |Σ| log n

RLBWT 0 4 1 4 O(1) O(1)

bitvectors 0 4 4 4 O(1) 0

SPSI 4 0 0 4 O(1) 0

TOTAL 4 8 5 12 O(1) O(1)

Table 6.1: Space occupancy of the data structures used by rle-lz77-1

• r ·
(

4 log n+ 8 log n
r + 5 log |Σ|+ 12 log log r +O( logn

log r )
)

+O(Σ log n) bits of space

• O(n log r log |Σ|) worst-case time

Where r is the number of equal-letter runs in the Burrows-Wheeler transform of
←−
T .

Note that the above space bound is about 12|RLBWT |, i.e. 12 times the size of a
run-length encoded BWT.

The idea behind our second algorithm rle-lz77-2 is to mark RLBWT positions as-
sociated with the source of a LZ77 factor during a first scan of the Burrows-Wheeler
transform, and then outputting the LZ77 factors during a second pass. To save time,
in our implementation we do not delete and re-build the RLBWT as done in our origi-
nal algorithm (this in practice would take too much time). This slightly increases space
usage (read below) as we need to store lengths and trailing characters of LZ77 factors
during the first scan. We keep the following data structures. (1) A gap-encoded bitvector
FPOS[0, . . . , n − 1] marking with a bit set F-positions that are the source of at least
a LZ77 factor. We use the structure of Theorem 32 for this component, for a total
space occupancy of 2z · (log(n/z) + log log z +O(log n/ log z)) bits. (2) a succinct bitvec-
tor REP [0, . . . , z− 1] taking z bits of space and keeping track of factors sharing the same
source: a bit set in FPOS representing the source of k distinct LZ77 factors is marked in
this bitvector with the pattern 10k−1. (3) a dynamic SPSI PTR[0, . . . , z − 1] associating
ranks of LZ77 factors to their corresponding bit in REP (this component stores therefore
a permutation of [0, z)). We use the structure of Theorem 31 for this component, for a
total space occupancy of 2z · (log z + log log z +O(1)) bits. Finally, we need three vec-
tors π[0, . . . , z − 1], λ[0, . . . , z − 1], and trail[0, . . . , z − 1] storing phrase sources, lengths,
and trailing characters of each factor, respectively. These vectors can be implemented
with three SPSI using overall z(log n+ log log z) + z(log σ+ log log z) +O(z) bits of space
while supporting O(log z)-time operations. For simplicity, we consider ε = 0. Table 6.2
recapitulates the space of all data structures—except RLBWT—used by rle-lz77-2.

z log n z log(n/z) z log |Σ| z log log z z z log n/ log z z log z

FPOS 0 2 0 2 0 O(1) 0

REP 0 0 0 0 1 0 0

PTR 0 0 0 2 O(1) 0 2

π, λ, trail 2 0 1 2 O(1) 0 0

TOTAL 2 2 1 6 O(1) O(1) 2

Table 6.2: Space occupancy of the data structures (excluding RLBWT) used by rle-lz77-2



6.4. Compression Algorithms, in Practice 117

Adding up all these terms (we group 2 log(n/z) + 2 log z = 2 log n and hide the O(z)
term inside O(z logn

log z )), we obtain:

Theorem 42. The rle-lz77-2 algorithm implemented in DYNAMIC computes the LZ77
factorization of a text T ∈ Σn within the following bounds:

• r ·
(

4 log n
r + log |Σ|+ 4 log log r +O( logn

log r )
)

+z ·
(

4 log n+ log |Σ|+ 6 log log z +O( logn
log z )

)
+

O(|Σ| log n) bits of space

• O (n(log r log |Σ|+ log z)) worst-case time

Where r is the number of equal-letter runs in the Burrows-Wheeler transform of
←−
T and z

is the number of LZ77 factors.

Note that the above space bound is about 4|RLBWT |+ 4|LZ77|, i.e. 4 times the size
of a run-length encoded BWT plus 4 times the size of the LZ77 parsing. This is much
less than the space—12|RLBWT |—taken by rle-lz77-1, especially considering that, in
practice, z is often much smaller than r. It should therefore not be surprising that—
see Chapter 7—rle-lz77-2 outperforms rle-lz77-1 in both working space and running
times.



118 6. From Theory to Practice: the DYNAMIC library



7
Experimental Results

This chapter is devoted to experimental results. We first present (Section 7.1) an experi-
mental evaluation of DYNAMIC’s succinct and gap-encoded bitvectors (standing at the core
of all other library’s data structures). In Section 7.2 we compare our compression algo-
rithms and indexes with the state of the art on repetitive text collections. All experiments
have been performed on a intel core i7 machine with 12 GB of RAM running Linux
Ubuntu 16.04.

7.1 DYNAMIC: Benchmarks

We built 34 gap-encoded (gap bv) and 34 succinct (suc bv) bitvectors containing n =
500 · 106 bits, varying the frequency b/n of bits set in the interval [0.0001, 0.99]. In each
experiment, we first built the bitvector by performing n insertb queries, b being equal
to 1 with probability b/n, at uniform random positions. After building the bitvector,
we executed n rank0, n rank1, n select0, n select1, and n access queries at uniform
random positions. Running times of each query were averaged over the n repetitions. We
measured memory usage in two ways: (i) internally by counting the total number of bits
allocated by our procedures—this value is denoted as allocated memory in our plots—,
and (ii) externally using the tool /usr/bin/time—this value is denoted as RSS in our
plots (Resident Set Size).

7.1.1 Working Space

We fitted measured RSS memory with the theoretical predictions of Section 6.2.2 using
a linear regression model. Parameters of the model were inferred using the statistical
tool R (function lm). In detail, we fitted RSS memory in the range b/n ∈ [0, 0.1]1 with
function k · f(n, b) + c, where: f(n, b) = b · (log(n/b) + log log b + log n/ log b) is our
theoretical prediction (recall that memory occupancy of our gap-encoded bitvector should
never exceed 2f(n, b)), k is a scaling factor accounting for memory fragmentation and
average load distribution in the B-tree, and c is a constant accounting for the weight
of loaded C++ libraries (this component cannot be excluded from the measurements
of the tool /usr/bin/time). Function lm provided us with parameters k = 1.19 and
c = 28758196 bits ≈ 3.4MB. The value for c was consistent with the space measured with
b/n close to 0.

1For b/n ≥ 0.1 it becomes more convenient—see below—to use our succinct bitvector, so we considered
it more useful to fit memory usage in b ∈ [0, 0.1]. In any case—see plot 7.1—the inferred model well fits
experimental data in the (more wide) interval b/n ∈ [0, 0.7].



120 7. Experimental Results

All plots were generated using R. Figures 7.1, 7.2, and 7.3 show memory occupancy
of DYNAMIC’s bitvectors as a function of the frequency b/n of bits set. In Figure 7.1 we
compare both bitvectors. In Figures 7.2 and 7.3 we show separately our gap-encoded and
succinct bitvectors (in the first case, we focus on the interval b/n ∈ [0, 0.1]). In Figures
7.1 and 7.2 we moreover show the growth of function 1.19 · f(n, b) + 28758196. Plot in
Figure 7.1 shows that our theoretical prediction fits almost perfectly the memory usage of
our gap-encoded bitvector for b/n ≤ 0.7. The plot suggests moreover that for b/n ≥ 0.1 it
is preferable to use our succinct bitvector rather than the gap-encoded one. As far as the
gap-encoded bitvector is concerned, memory fragmentation2 amounts to approximately
15% of the allocated memory for b/n ≤ 0.5. This fraction increases to 24% for b/n close
to 1. Plot in Figure 7.3 shows memory usage of our succinct bitvector. As expected,
memory usage is independent of b/n (except small oscillations due to load distribution
in the B-tree and memory fragmentation). Note that RSS memory never exceeds 1.29n
bits: the overhead of 0.29n bits is distributed among (1) rank/select succinct structures
(≈ 0.07n bits) (2) loaded C++ libraries (a constant amounting to approximately 3.4 MB,
i.e. ≈ 0.06n bits in this case), and memory fragmentation (≈ 0.16n bits). Excluding the
size of C++ libraries (which is constant), our bitvector’s size never exceeds 1.23n bits
(being 1.20n bits on average).

7.1.2 Running Times

Plots in Figures 7.4-7.9 show running times of our bitvectors on all queries. We used a
linear regression model (inferred using R’s function lm) to fit function c+k ·log b with query
times of our gap-encoded bitvector. Query times of our succinct bitvector were interpolated
with a constant (being n fixed). These plots show interesting results. First of all, our
succinct bitvector supports extremely fast (0.01µs on average) access queries. rank and
select queries are, on average, 15 times slower than access queries. As expected, insert
queries are very slow, requiring—on average—390 times the time of access queries and
26 times that of rank/select queries. On all except access queries, running times of our
gap-encoded bitvector are faster than (or comparable to) those of our succinct bitvector
for b/n ≤ 0.1. Combined with the results in Plots 7.1, 7.2, and 7.3, these considerations
confirm that for b/n ≤ 0.1 our gap-encoded bitvector should be preferred to the succinct
one. access, rank, and select queries are all supported in comparable times on our
gap-encoded bitvector (≈ 0.05 · log b µs), and are one order of magnitude faster than
insert queries. Finally, one might wonder why gap-bv is much slower than suc-bv for
b/n ≥ 0.1, given that they use the same machinery (i.e. a SPSI). This is due to two main
reasons. First of all, in suc-bv’s SPSI, all integers are either 0 or 1 so we use built-in
constant-time operations such as popcount and masks to speed-up queries. This is not
true in gap-bv: even for very dense bitvectors, a single gap length greater than 1 would
force all integers in its leaf to be assigned more than 1 bit (thus preventing the use of
fast built-in operations on words). The second reason for this behavior is that we use a
larger leaf size (of O(log2 n)) in suc-bv. This leads to a smaller tree height with respect
to gap-bv (whose height is O(log b)) for large b/n.

2we estimated the impact of memory fragmentation by comparing RSS and allocated memory, after
subtracting from RSS the estimated weight—approximately 3.4 MB—of loaded C++ libraries



7.2. Repetitive Text Collections 121

7.2 Repetitive Text Collections

We organized experiments as follows. We generated and downloaded twelve highly repet-
itive text collections from three domains: genomes, software, and wikipedia web pages.
Then, we ran six BWT construction algorithms, six LZ77 factorization algorithms, and
built five compressed indexes on these datasets. Compression algorithms were assessed
on their speed and memory footprint during execution, while indexes were assessed on
their disk size and on the time and RAM space taken to answer count and locate

queries. Running times and memory usage (Resident Set Size) were measured with the
tool /usr/bin/time. We generated patterns in pizza&chili format [37]. On our repet-
itive datasets, a large number of patterns extracted with the genpatterns tool of [37]
occurred millions of times in the text; to limit computation times while still being able to
test the indexes on a sufficiently large number of patterns, we created our own version of
genpatterns (available at [98]). Our tool employs an FM-index to count the number of
pattern occurrences and uses this information to output only patterns occurring a fixed
maximum number of times in the text. Using our tool, we extracted from each dataset
5000 patterns of length 2i, for i = 2, . . . , 10, occurring at most 1000 times each in the text.

7.2.1 Datasets

We used two custom scripts to generate the repetitive datasets. Our scripts download and
concatenate all versions of a Wikipedia web page [103] and source code from all revisions of
a GitHub repository [99]. In addition, we downloaded four repetitive DNA datasets from
the pizza&chili repetitive corpus [37]. Our aim was to compare all tools (compression
algorithms and indexes) on a common ground, so we chose the maximum input file size
according to the most memory-consuming tool (the LZ77-index construction tool—see
below—, which requires approximately 13n bytes of RAM during execution). As a result,
we truncated all files to 5 · 108 Bytes (when bigger). The datasets are:

• DNA (from pizza&chili repetitive corpus):

– cere: 37 sequences of Saccharomyces Cerevisiae

– para: 36 sequences of Saccharomyces Paradoxus

– influenzae: 78041 sequences of Haemophilus Influenzae

– escherichia: 23 sequences of Escherichia Coli

• Git repositories. Concatenation of source files from the last revisions of:

– sdsl. github.com/simongog/sdsl-lite

– samtools. github.com/samtools/samtools

– boost. github.com/boostorg/boost

– bwa. github.com/lh3/bwa

• wikipedia. Concatenation of all versions of:

– einstein. en.wikipedia.org/wiki/Albert_Einstein

– earth. en.wikipedia.org/wiki/Earth

github.com/simongog/sdsl-lite
github.com/samtools/samtools
github.com/boostorg/boost
github.com/lh3/bwa
en.wikipedia.org/wiki/Albert_Einstein
en.wikipedia.org/wiki/Earth


122 7. Experimental Results

– bush. en.wikipedia.org/wiki/George_W._Bush

– wikipedia. en.wikipedia.org/wiki/Wikipedia

Table 7.1 reports the sizes of the above files before and after compression with 7-
Zip (www.7-zip.org, indicated as 7z in the following), followed by the compression rate
(uncompressed size/compressed size).

File Size (MB) 7z-compressed size (MB) Compression rate

cere 439.92 8.01 54.90
para 409.38 9.80 41.78
influenzae 147.63 2.45 60.29
escherichia 107.47 7.06 15.23

sdsl 476.84 0.34 1385.94
samtools 476.84 0.70 677.01
boost 476.84 0.12 4031.41
bwa 418.38 0.38 1112.23

einstein 476.84 0.81 589.84
earth 476.84 0.97 489.99
bush 476.84 1.15 413.78
wikipedia 476.84 1.24 385.73

Table 7.1: Size of the datasets before and after 7z-compression. Last column is the rate between
columns 2 and 3, and represents by how many times 7z compresses the dataset. Note that software
repositories are extremely repetitive: in particular, the boost C++ library is compressed by over
4000 times with 7z.

7.2.2 Tested Algorithms and Indexes

BWT Table 7.2 shows all tested BWT construction algorithms. We include the space
used by the tools in RAM and on disk in theory and practice. Disk space for input/output
is excluded.

LZ77 Table 7.3 shows all tested LZ77 factorization algorithms. These tools work into
main memory, so we do not show disk usage. As far as lzscan is concerned, we chose d in
such a way that the term O(n/d) was always around 50% text’s size (the tool requires n/d
to be an integer number of MB). The tool bwte uses a constant (user-defined) amount of
RAM during execution; we fixed this constant to the default (256 MB) in all experiments.
We included isa6r as it is specialized for repetitive inputs.

Indexes The tested indexes for repetitive text collections are reported in Table 7.4.
fmi-rrr is sdsl’s FM-index implementation [43,98] using RRR-bitvectors for the wavelet
trees. We used the same suffix array sparsification factor of 512 for the following in-
dexes: fmi-rrr, rlcsa, s-rlbwt, slz-rlbwt (in the latter index, this value represents
the sparsification degree d of the LZ77-d parse, see Section 5.3.3). We chose to build the
most space-efficient version of the LZ77 index [64] (lzi in the table) by calling the index
construction tool as build lz77 <input> <output> bsst brev.

en.wikipedia.org/wiki/George_W._Bush
en.wikipedia.org/wiki/Wikipedia
www.7-zip.org


7.2. Repetitive Text Collections 123

tool type RAM th disk th RAM pr disk pr

se-sais [8, 43] SA O(n log σ) O(n logn) 1.2n B 5n B

divsufsort [43, 81] SA n logn 0 5n B 0

bwte [29] BWT O(1) O(n log σ) 256 MB 1.3n B

dbwt [107] BWT O(n log σ) 0 2.4n B 0

cw-bwt 3.2, 6.4.1 BWT n(Hk + 1) + o(n log σ) 0 n(Hk + 1) bits 0

rle-bwt 3.3, 6.4.2 BWT O(r) words 0 11r B 0

Table 7.2: Tested BWT construction tools. Some tools build only the suffix array (note that
with SA + text we can access the BWT, so this is conceptually equivalent to building the BWT).
RAM/disk th/pr stands for space used in RAM/disk in theory and in practice (some tools work
in external memory). Theoretical spaces are in bits if not otherwise specified.

tool RAM th RAM pr

isa6r [61, 73] O(n log n) 6n B

kkp1s [58, 73] O(n log n) 5n B

lzscan [57, 73] O(n log σ) n+O(n/d) B

h0-lz77 4.2, 6.4.3 n(H0 + 1) + o(n log σ) 1.1n(H0 + 1) bits

rle-lz77-1 4.3.1, 6.4.4 O(r) words 48r B

rle-lz77-2 4.3.2, 6.4.4 O(r + z) words 16r + 16z B

Table 7.3: Tested LZ77 factorization tools. All tools work in RAM; we show both theoretical
(RAM th) and practical (RAM pr) space bounds. Theoretical spaces are in bits if not otherwise
specified.

index name notes ref

fmi-rrr sdsl’s FM index with RRR-compressed wavelet trees [43,98]

rlcsa Run-length compressed suffix array [110,111]

lzi Most compressed variant of the LZ77 index [64,65]

s-rlbwt Our sparse rlbwt index 5.3.2, [101]

slz-rlbwt Our slz-rlbwt index 5.3.3, [100]

Table 7.4: Tested compressed indexes

7.2.3 Results

Compression Tools

We start by discussing the behavior of our BWT construction algorithm cw-bwt. Recall
that we tested two cw-bwt implementations. The former, originally presented in paper
(i), discussed in Section 3.2, and implemented in [96], employs a dynamic bitvector
(implemented in [42]) supporting constant-time operations on bit-sequences of size wO(1).
This implementation was originally developed to prove that our algorithm runs in linear
time on constant-sized alphabets and near-uniform text distributions. The latter cw-bwt

version has been described in Section 6.4.1 and is implemented in DYNAMIC. This alternative
version runs in O(n log log n) time on constant-sized alphabets and near-uniform text
distributions. We ran the linear-time version of cw-bwt on several prefixes of the Human
genome (alphabet ΣDNA = {A,C,G, T,N}, size n ≈ 3 · 109). Plot in Figure 7.10 shows
the results. Vertical dashed lines show how the entropy order k automatically increases
with the input sequence size. The plot confirms that—on constant-sized alphabets and



124 7. Experimental Results

near-uniform text distributions—cw-bwt runs in linear time. cw-bwt completed the BWT
of the entire Human genome in 4 hours and 37 minutes using only 994 MB of RAM
(about 2.6 bits per input symbol, less than a plain encoding of the alphabet ΣDNA). As
discussed below, the O(n log logn)-time version of cw-bwt has been compared with all
other compression tools on repetitive datasets.

Plots in Figures 7.11-7.16 show running times and memory usage of tested BWT/LZ77
compression algorithms on all datasets. Solid and a dashed horizontal lines show the
datasets’ sizes before and after compression with 7z, respectively. Our tools are highlighted
in red. We can infer some general trends from the plots. Our tools (except rle-lz77-1

in some cases) use always less space than the plain text, but from one to three orders of
magnitude more space than the 7z-compressed text. h0-lz77 and cw-bwt use always a
working space very close to (and always smaller than) the plain text, with cw-bwt (k-th
order compression) being more space-efficient than h0-lz77 (0-order compression). On
the other hand, our more space-efficient tools—rle-bwt and rle-lz77-2—are up to two
orders of magnitude more space-efficient than h0-lz77 and cw-bwt in most of the cases.
This behavior confirms—as expected—that entropy-compression is not able to exploit long
text repetitions to improve compression; LZ77 and run-length encoding of the BWT are
by far more appropriate in such cases. As predicted by theory (Section 6.4.4), rle-lz77-1
is slower and less space-efficient than rle-lz77-2 in all cases.

bwte represents a good trade-off in both running times and working space between
tools working in compressed and uncompressed working space. kkp1s is the fastest tool,
but uses a working space that is one order of magnitude larger than the uncompressed
text and—in all except DNA datasets—three orders of magnitude larger than that of
rle-bwt and rle-lz77-2. As predicted by theory, tools working in compact working
space (lzscan, se-sais, dbwt) use always slightly more space than the uncompressed
text, and one order of magnitude less space than tools working in O(n) words.

To conclude, all plots show that the price to pay for working in small space is high
running times. Our tools are up to three orders of magnitude slower than tools working in
O(n) words of space. As predicted by theory (Sections 3.2 and 4.2 and Theorems 38 and
40), cw-bwt is faster than h0-lz77. This is due to two main reasons: (i) cw-bwt breaks
the BWT in contexts, and therefore works on much smaller dynamic strings, and (ii) the
average wavelet tree height in cw-bwt is Hk, while in h0-lz77 is H0. In some cases (e.g.
boost), these factors make cw-bwt almost one order of magnitude faster than h0-lz77.

Indexes

Disk space In Figures 7.17 and 7.18 we compare the disk memory footprint of our
s-rlbwt index with that of the rlcsa index. We show space usage in terms of bits per
character. We moreover separate GitHub and Wikipedia files from DNA files, being the
firsts one order of magnitude more compressible than the seconds. These plots show only
the space taken by the compressed suffix arrays; we excluded the suffix array sampling
from the measurements. On DNA datasets, the s-rlbwt index is much smaller than the
rlcsa. This trend is still present—even if with smaller differences—On GitHub datasets.
On Wikipedia datasets the trend is inverted: the rlcsa is slightly more space efficient
than the s-rlbwt index. This behavior might reflect a higher dependency on the alphabet
size in our index, rather than on the dataset compressibility. To test this statement, we
generated a uniform random text of length n = 108 on the alphabet {1, . . . , 255} and built



7.2. Repetitive Text Collections 125

the rlcsa and the s-rlbwt indexes on this file. The rlcsa’s size was of 203511448 Bytes,
while the s-rlbwt’s size 197956842 Bytes (i.e. 97% rlcsa’s size). This indicates that,
while the alphabet size plays an important role on the size of our index (being the two
indexes almost equal in size), it is not the only factor that determines its compression
efficiency (the text’s structure also has some impact). In Figure 7.19 we compare the disk
space of all indexes, taking into account all their components (i.e. suffix array sampling
included, when present). As expected, slz-rlbwt and lzi are by far the most space-
efficient indexes. slz-rlbwt is—on average—1.1 times larger than lzi, with a peak on
the boost dataset (the most compressible one, see Table 7.1), where slz-rlbwt is 1.38
times larger than lzi. On one dataset (escherichia), slz-rlbwt is more space-efficient
than lzi. As Table 7.5 shows, the space-efficiency of the slz-rlbwt index derives from
the fact that—on average—z512 is just 7.3% of z0. This explains why slz-rlbwt and
lzi are comparable in size, despite slz-rlbwt including almost all components of the
lzi (plus a RLBWT). The rlcsa is—on average—1.16 times larger than s-rlbwt. The
two indexes are comparable in size on all except DNA datasets; on these datasets, rlcsa
takes as much as 1.7 times the space of s-rlbwt. Finally, as expected fmi is by far the
least space-efficient tool: this confirms, again, that entropy compression is not suitable for
compressing repetitive datasets.

File z512 z0 z512/z0 (%)

boost 795 22680 3.5

bush 21643 358035 6.0

bwa 6643 106655 6.2

cere 208695 1700630 12.3

earth 15882 314681 5.0

einstein 16291 251450 6.5

escherichia 113700 2075822 5.5

influenzae 146072 765934 19.1

para 215915 2332657 9.3

samtools 6991 150988 4.6

sdsl 4411 113591 3.9

wikipedia 23761 390170 6.1

Table 7.5: The table shows the numbers z512 and z0 of phrases of the LZ77-512 and LZ77-0
factorizations, respectively. Remarkably, z512 is—on average—just 7.3% of z0. z512 and z0 were
computed using the tools slz-rlbwt and kkp1s, respectively

Count queries Figures 7.20-7.25 show running times of all indexes on count queries.
Recall that lzi does not support count directly: in order to count the number of pat-
tern occurrences, this index has to locate them all. As expected, lzi is three orders
of magnitude slower than all other indexes on all datasets and all pattern lengths. The
other indexes run in comparable times, with rlcsa being the fastest and our s-rlbwt and
slz-rlbwt indexes the slowest (up to 5 times slower than rlcsa on the boost dataset).
Also this is an expected result, since our indexes are asymptotically slower than rlcsa

(by a factor of logε n, see Section 5.3.2). fmi is—in general—faster than our indexes and



126 7. Experimental Results

slower than rlcsa.

Locate queries Figures 7.26-7.31 show running times of all indexes on locate queries.
Again, lzi running times show a sharp dependency (quadratic) on the pattern length.
The other tools do not show this behavior; however, on short patterns lzi running times
are—almost always—smaller than those of other indexes. Running times of all tools are
affected by the number of pattern occurrences, which tend to decrease with the length of
the pattern. This phenomenon is responsible for the running times of all indexes (except
lzi and slz-rlbwt) to decrease with the pattern length. Interestingly, running times of
the slz-rlbwt index show a sinusoidal behavior; this is due to the contrasting effects of
decreasing number occ of occurrences and increasing pattern length m (recall that this
index has a occ ·m term in its locate running times). The plots show that our slz-rlbwt
index is much faster than lzi on DNA datasets with patterns longer than, approximately,
26. This trend is inverted on GitHub and Wikipedia datasets (characterized by a larger
alphabet), where lzi is up to two orders of magnitude faster than slz-rlbwt for short
patterns. However, on long patterns the running times of the two indexes meet. To
conclude, rlcsa is by far the fastest index, being two orders of magnitude faster than all
other indexes on almost all datasets and pattern lengths. The only exception in this case
is represented by lzi, which in some cases (DNA and Wikipedia datasets) is faster than
rlcsa on short patterns (shorter than, approximately 23).

Considering that—on locate queries—rlcsa is faster and more memory-consuming
than slz-rlbwt, we also compared these two indexes choosing the sample rate for rlcsa in
such a way that its final size matched that of slz-rlbwt. Note that—on most datasets—
rlcsa without suffix array sampling is already larger than the slz-rlbwt (see Figure
7.17); for this reason, we conducted the experiment on the wikipedia dataset, being it
one of the few that was more compressible with rlcsa than with our RLBWT. With
a sample rate of 2200 for rlcsa and 512 for slz-rlbwt, both indexes’ sizes were ap-
proximately 4 MB. In Figure 7.44 we report our results. rlcsa is still the fastest index,
supporting locate queries from 25 to 210 times faster than slz-rlbwt. This is due to
two reasons: (i) slz-rlbwt is (also in theory) slower than rlcsa by a factor of logε n,
and (ii) the leading terms in slz-rlbwt’s and rlcsa’s locate times are occ ·m and occ,
respectively. Considering that—on our dataset—occ decreases with the pattern length,
reason (ii) also explains why rlcsa’s locate times decrease with the pattern length while
slz-rlbwt’s ones increase: this phenomenon is due to the fact that m grows at a faster
rate than occ−1 does (so the product occ · m increases with m). We note that this is
not necessarily a negative result for our index. rlcsa still suffers from the space/time
trade-off introduced by the suffix array sampling; this means that, on very (in particular,
exponentially) compressible datasets, rlcsa can achieve a memory footprint comparable
to that of slz-rlbwt only storing very few (possibly, a constant number of) samples.
This clearly affects rlcsa’s running times, which can become linear in the dataset size n.
This situation already happens with the boost dataset: on this input, rlcsa’s compressed
suffix array (without the suffix array sampling) takes 369 KB of memory. On the other
hand, the whole slz-rlbwt index’s size on this dataset is only 264 KB. It follows that
the only hope for rlcsa to approach the same space usage of slz-rlbwt is to store a
very small number of samples (possibly constant), thus incurring in a Ω(n) cost for each
locate query.



7.2. Repetitive Text Collections 127

RSS memory - count Figures 7.32-7.37 show RSS memory usage of all indexes on
count queries. Memory usage of all indexes (as measured by /usr/bin/time) during
count queries has the same trend among all datasets. lzi is the most space-efficient
index, followed by slz-rlbwt, s-rlbwt, rlcsa, and fmi. The memory usage of lzi is
always very close to that of slz-rlbwt, and s-rlbwt is always more space-efficient than
rlcsa. Consistently with Figure 7.19 (disk space), fmi uses up to one order of magnitude
more space than all other indexes.

RSS memory - locate Figures 7.38-7.43 show RSS memory usage of all indexes on
locate queries. These plots show clearly that the lzi index is very sensitive to the
number occ of pattern occurrences. On short patterns (having more occurreces), lzi is
one of the least space-efficient tools. This effect is alleviated on long patterns, but—
except on DNA datasets—lzi uses more working space than all other indexes except fmi
(which is always the least space-efficient tool). As noted above, rlcsa’s working space is
always higher than that of s-rlbwt. With the only exceptions of datasets cere and para,
our slz-rlbwt index is by far the most space-efficient. These plots show that our DFS-
traversal of the tree of pattern occurrences (see Section 5.3.3) is much more convenient
than what implemented in the lzi index: in some cases (e.g. short samtools patterns),
lzi uses more than 4 times the space of slz-rlbwt.



128 7. Experimental Results

bitvectors (n = 500 x 106 bits)

Frequency of bits set (b/n)

R
A

M
 (

 1
06  b

its
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

50
0

15
00

25
00

35
00

RSS gap_bv
allocated gap_bv
1.19 f(n,b) +  28758196
RSS suc_bv
allocated suc_bv

Figure 7.1: Memory occupancy of DYNAMIC’s bitvectors. n is the number of inserted bits and b
the number of bits set. The frequency of bits set (x axis) is b/n. We show memory usage as
measured internally (allocated : total number of bits allocated by our procedures) and externally
by /usr/bin/time (RSS : resident set size). We moreover show the growth of function f(n, b) =
b(log(n/b) + log log b+ log n/ log b) opportunely scaled to take into account memory fragmentation
and the weight of loaded C++ libraries.



7.2. Repetitive Text Collections 129

gap_bv (n = 500 x 106 bits)

Frequency of bits set (b/n)

R
A

M
 (

 1
06  b

its
)

0 0.02 0.04 0.06 0.08 0.1

0
10

0
20

0
30

0
40

0
50

0
60

0 RSS gap_bv
allocated gap_bv
1.19 f(n,b) +  28758196

Figure 7.2: Memory occupancy of DYNAMIC’s gap-encoded bitvector in the interval b/n ∈ [0, 0.1].
Here, f(n, b) = b(log(n/b) + log log b+ log n/ log b).

suc_bv (n = 500 x 106 bits)

Frequency of bits set (b/n)

R
A

M
 (

 1
06  b

its
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

50
0

55
0

60
0

65
0

70
0

RSS suc_bv
allocated suc_bv
1.29n bits

Figure 7.3: Memory occupancy of DYNAMIC’s succinct bitvector



130 7. Experimental Results

bitvectors: access queries

Frequency of bits set (b/n)

T
im

e 
( µ

 s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.
0

0.
2

0.
4

0.
6

0.
8

suc_bv
gap_bv
−0.93  +  0.06  log(b)
0.01

Figure 7.4: Running times of DYNAMIC’s bitvectors on access queries

bitvectors: rank0 queries

Frequency of bits set (b/n)

T
im

e 
( µ

 s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.
0

0.
2

0.
4

0.
6

suc_bv
gap_bv
−0.87  +  0.05  log(b)
0.15

Figure 7.5: Running times of DYNAMIC’s bitvectors on rank0 queries



7.2. Repetitive Text Collections 131

bitvectors: rank1 queries

Frequency of bits set (b/n)

T
im

e 
( µ

 s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.
0

0.
2

0.
4

0.
6

suc_bv
gap_bv
−0.82  +  0.05  log(b)
0.14

Figure 7.6: Running times of DYNAMIC’s bitvectors on rank1 queries

bitvectors: select0 queries

Frequency of bits set (b/n)

T
im

e 
( µ

 s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.
0

0.
2

0.
4

suc_bv
gap_bv
−0.7  +  0.04  log(b)
0.18

Figure 7.7: Running times of DYNAMIC’s bitvectors on select0 queries



132 7. Experimental Results

bitvectors: select1 queries

Frequency of bits set (b/n)

T
im

e 
( µ

 s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.
0

0.
2

0.
4

suc_bv
gap_bv
−0.71  +  0.04  log(b)
0.14

Figure 7.8: Running times of DYNAMIC’s bitvectors on select1 queries

bitvectors: insert queries

Frequency of bits set (b/n)

T
im

e 
( µ

 s
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.
0

0.
6

1.
2

1.
8

2.
4

3.
0

3.
6

4.
2

4.
8

5.
4

6.
0

6.
6

suc_bv
gap_bv
−4.75  +  0.34  log(b)
3.9

Figure 7.9: Running times of DYNAMIC’s bitvectors on insert queries



7.2. Repetitive Text Collections 133

0 500 1000 1500 2000 2500 3000

0
50

00
10

00
0

15
00

0

cw−bwt running times − Human genome

size (MB)

tim
e 

(s
ec

on
ds

)

k=4

k=5

k=6

k=7

Figure 7.10: cw-bwt running times on prefixes of the Human genome. To generate this plot we ran
an implementation [96] of cw-bwt using the bitvector [42] described in Section 3.2 (i.e. supporting
constant-time operations on bit-sequences of size wO(1)) on several prefixes of the Human genome
(alphabet ΣDNA = {A,C,G, T}). Vertical dashed lines show how the entropy order k automatically
increases with the input sequence size. The plot confirms that—on constant-sized alphabets and
near-uniform text distributions—cw-bwt runs in linear time with respect to n.



134 7. Experimental Results

●
●

2.0 3.0 4.0 5.0

4.0

4.5

5.0

5.5

6.0

6.5

7.0

cere

Time (log10(s))

R
A

M
 (

lo
g 1

0(
K

B
))

● ●

2.0 3.0 4.0 5.0

4.0

4.5

5.0

5.5

6.0

6.5

7.0

para

Time (log10(s))

● ●dbwt bwte se−sais divsufsort cw−bwt rle−bwt

isa6r kkp1s Lzscan h0−lz77 rle−lz77−1 rle−lz77−2

plain size 7−zip

Figure 7.11: Compression tools on the datasets cere and para



7.2. Repetitive Text Collections 135

●

●

1.0 2.0 3.0 4.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

influenzae

Time (log10(s))

R
A

M
 (

lo
g 1

0(
K

B
))

●

●

1.0 2.0 3.0 4.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

escherichia

Time (log10(s))

● ●dbwt bwte se−sais divsufsort cw−bwt rle−bwt

isa6r kkp1s Lzscan h0−lz77 rle−lz77−1 rle−lz77−2

plain size 7−zip

Figure 7.12: Compression tools on the datasets influenzae and escherichia



136 7. Experimental Results

● ●

2.0 3.0 4.0 5.0

3

4

5

6

7

sdsl

Time (log10(s))

R
A

M
 (

lo
g 1

0(
K

B
))

● ●

2.0 3.0 4.0 5.0

3

4

5

6

7

samtools

Time (log10(s))

● ●dbwt bwte se−sais divsufsort cw−bwt rle−bwt

isa6r kkp1s Lzscan h0−lz77 rle−lz77−1 rle−lz77−2

plain size 7−zip

Figure 7.13: Compression tools on the datasets sdsl and samtools



7.2. Repetitive Text Collections 137

●
●

1.5 2.5 3.5 4.5

2

3

4

5

6

7

boost

Time (log10(s))

R
A

M
 (

lo
g 1

0(
K

B
))

● ●

1.5 2.5 3.5 4.5

2

3

4

5

6

7

bwa

Time (log10(s))

● ●dbwt bwte se−sais divsufsort cw−bwt rle−bwt

isa6r kkp1s Lzscan h0−lz77 rle−lz77−1 rle−lz77−2

plain size 7−zip

Figure 7.14: Compression tools on the datasets boost and bwa



138 7. Experimental Results

● ●

2.0 3.0 4.0 5.0

3

4

5

6

7

einstein

Time (log10(s))

R
A

M
 (

lo
g 1

0(
K

B
))

● ●

2.0 3.0 4.0 5.0

3

4

5

6

7

earth

Time (log10(s))

● ●dbwt bwte se−sais divsufsort cw−bwt rle−bwt

isa6r kkp1s Lzscan h0−lz77 rle−lz77−1 rle−lz77−2

plain size 7−zip

Figure 7.15: Compression tools on the datasets einstein and earth



7.2. Repetitive Text Collections 139

● ●

2.0 3.0 4.0 5.0

3

4

5

6

7

bush

Time (log10(s))

R
A

M
 (

lo
g 1

0(
K

B
))

● ●

2.0 3.0 4.0 5.0

3

4

5

6

7

wikipedia

Time (log10(s))

● ●dbwt bwte se−sais divsufsort cw−bwt rle−bwt

isa6r kkp1s Lzscan h0−lz77 rle−lz77−1 rle−lz77−2

plain size 7−zip

Figure 7.16: Compression tools on the datasets bush and wikipedia



140 7. Experimental Results

rlcsa vs s−rlbwt:
disk size without SA sampling (Git, Wikipedia)

bi
ts

 p
er

 c
ha

ra
ct

er

0.
00

0.
02

0.
04

0.
06

rlcsa
s−rlbwt

sd
sl

sa
m

to
ol

s

bo
os

t

bw
a

ei
ns

te
in

ea
rth

bu
sh

w
ik

ip
ed

ia

Figure 7.17: Disk size of the Run-length compressed suffix array (rlcsa) and of the sparse run-
length BWT (s-rlbwt) excluding the suffix array sampling on GitHub and Wikipedia datasets.
Our compressed suffix array improves upon the space of the rlcsa on GitHub datasets. On all
Wikipedia datasets except earth, the trend is inverted.



7.2. Repetitive Text Collections 141

rlcsa vs s−rlbwt:
disk size without SA sampling (DNA)

bi
ts

 p
er

 c
ha

ra
ct

er

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

rlcsa
s−rlbwt

ce
re

pa
ra

in
flu

en
za

e

es
ch

er
ic

hi
a

Figure 7.18: Disk size of the Run-length compressed suffix array (rlcsa) and of the sparse run-
length BWT (s-rlbwt) excluding the suffix array sampling on DNA datasets. In this case, our
compressed suffix array significantly improves upon the space of the rlcsa. Note that rlcsa is
not able to compress escherichia (as it uses almost 2 bits per character).



142 7. Experimental Results

Indexes for highly repetitive text collections:
disk size

bi
ts

 p
er

 c
ha

ra
ct

er

ce
re

pa
ra

in
flu

en
za

e
es

ch
er

ic
hi

a
sd

sl
sa

m
to

ol
s

bo
os

t
bw

a
ei

ns
te

in
ea

rth

bu
sh

w
ik

ip
ed

ia

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

fmi−rrr
rlcsa
s−rlbwt
slz−rlbwt
lzi

Figure 7.19: Disk space of the tested indexes. Note that indexes relying on a uniform sampling of
the suffix array (fmi-rrr, rlcsa, s-rlbwt) are the most space-consuming. The lzi and slz-rlbwt

indexes, on the other hand, compress all their structures in a data-aware manner and improve by
several times the space of the other indexes on all datasets. It is worth to notice that the size of
our slz-rlbwt is on average only 1.1 times larger than (never exceeding 1.38 times) that of lzi.



7.2. Repetitive Text Collections 143

● ●
●

●
● ●

●
●

●

2 4 6 8 10

−
20

−
15

−
10

−
5

0

cere − count
running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

●
●

●
●

●
●

●
●

●

2 4 6 8 10

−
20

−
15

−
10

−
5

0

para − count
running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.20: Count times of the indexes on cere and para

●
●

●
●

●
●

●
●

●

2 4 6 8 10

−
20

−
15

−
10

−
5

0

influenzae − count
running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

●
●

●

●
●

● ●

●
●

2 4 6 8 10

−
20

−
15

−
10

−
5

0

escherichia − count
running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.21: Count times of the indexes on influenzae and escherichia



144 7. Experimental Results

●
●

●

● ●
●

● ●
●

2 4 6 8 10

−
15

−
10

−
5

sdsl − count
running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

●

● ●
●

●
●

●
●

●

2 4 6 8 10

−
15

−
10

−
5

samtools − count
running times per pattern

log2(pattern length)
tim

e 
pe

r 
pa

tte
rn

 (
lo

g 2
(s

))

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.22: Count times of the indexes on sdsl and samtools

●

● ●

●
●

● ●
● ●

2 4 6 8 10

−
15

−
10

−
5

boost − count
running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

●
●

● ●
●

●
●

●
●

2 4 6 8 10

−
15

−
10

−
5

bwa − count
running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.23: Count times of the indexes on boost and bwa



7.2. Repetitive Text Collections 145

●
●

●
●

●
●

●
●

●

2 4 6 8 10

−
15

−
10

−
5

0
einstein − count

running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

●
● ●

●

● ●
● ●

●

2 4 6 8 10

−
15

−
10

−
5

0

earth − count
running times per pattern

log2(pattern length)
tim

e 
pe

r 
pa

tte
rn

 (
lo

g 2
(s

))

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.24: Count times of the indexes on einstein and earth

● ●
●

●

● ●
●

●
●

2 4 6 8 10

−
15

−
10

−
5

0

bush − count
running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

●
●

●

● ●
●

●
●

●

2 4 6 8 10

−
15

−
10

−
5

0

wikipedia − count
running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.25: Count times of the indexes on bush and wikipedia



146 7. Experimental Results

●

●

● ● ● ●
●

●
●

2 4 6 8 10

−
10

−
8

−
6

−
4

−
2

0

cere − locate
running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

●
●

● ●
● ● ● ● ●

2 4 6 8 10

−
10

−
8

−
6

−
4

−
2

0

para − locate
running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.26: Locate times of the indexes on cere and para

●

●

●
●

●
●

●

●

●

2 4 6 8 10

−
10

−
8

−
6

−
4

−
2

0
2

influenzae − locate
running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

●

●

●
● ●

● ● ●
●

2 4 6 8 10

−
10

−
8

−
6

−
4

−
2

0
2

escherichia − locate
running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.27: Locate times of the indexes on influenzae and escherichia



7.2. Repetitive Text Collections 147

●
● ●

● ● ● ● ● ●

2 4 6 8 10

−
10

−
8

−
6

−
4

−
2

sdsl − locate
running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

● ●
● ● ● ● ● ●

●

2 4 6 8 10

−
10

−
8

−
6

−
4

−
2

samtools − locate
running times per pattern

log2(pattern length)
tim

e 
pe

r 
pa

tte
rn

 (
lo

g 2
(s

))

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.28: Locate times of the indexes on sdsl and samtools

●
● ● ●

● ● ● ● ●

2 4 6 8 10

−
10

−
8

−
6

−
4

−
2

0

boost − locate
running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

● ● ● ● ● ● ● ●
●

2 4 6 8 10

−
10

−
8

−
6

−
4

−
2

0

bwa − locate
running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.29: Locate times of the indexes on boost and bwa



148 7. Experimental Results

● ● ● ● ● ● ● ● ●

2 4 6 8 10

−
10

−
8

−
6

−
4

−
2

0
einstein − locate

running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

● ● ● ● ● ●
●

●
●

2 4 6 8 10

−
10

−
8

−
6

−
4

−
2

0

earth − locate
running times per pattern

log2(pattern length)
tim

e 
pe

r 
pa

tte
rn

 (
lo

g 2
(s

))

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.30: Locate times of the indexes on einstein and earth

● ● ● ● ●
●

●
●

●

2 4 6 8 10

−
10

−
8

−
6

−
4

−
2

bush − locate
running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

● ● ● ● ● ● ● ●
●

2 4 6 8 10

−
10

−
8

−
6

−
4

−
2

wikipedia − locate
running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.31: Locate times of the indexes on bush and wikipedia



7.2. Repetitive Text Collections 149

● ● ● ● ● ● ● ● ●

2 4 6 8 10

20
40

60
80

cere − count
Resident Set Size

log2(pattern length)

R
S

S
 (

M
B

)
● ● ● ● ● ● ● ● ●

2 4 6 8 10

20
40

60
80

para − count
Resident Set Size

log2(pattern length)

R
S

S
 (

M
B

)

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.32: Count - Resident Set Size of the indexes on cere and para

● ● ● ● ● ● ● ● ●

2 4 6 8 10

10
20

30
40

influenzae − count
Resident Set Size

log2(pattern length)

R
S

S
 (

M
B

)

● ● ● ● ● ● ● ● ●

2 4 6 8 10

10
20

30
40

escherichia − count
Resident Set Size

log2(pattern length)

R
S

S
 (

M
B

)

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.33: Count - Resident Set Size of the indexes on influenzae and escherichia



150 7. Experimental Results

● ● ● ● ● ● ● ● ●

2 4 6 8 10

5
10

15
20

25
30

35
sdsl − count

Resident Set Size

log2(pattern length)

R
S

S
 (

M
B

)

● ● ● ● ● ● ● ● ●

2 4 6 8 10

5
10

15
20

25
30

35

samtools − count
Resident Set Size

log2(pattern length)
R

S
S

 (
M

B
)

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.34: Count - Resident Set Size of the indexes on sdsl and samtools

● ● ● ● ● ● ● ● ●

2 4 6 8 10

5
10

15
20

25
30

boost − count
Resident Set Size

log2(pattern length)

R
S

S
 (

M
B

)

● ● ● ● ● ● ● ● ●

2 4 6 8 10

5
10

15
20

25
30

bwa − count
Resident Set Size

log2(pattern length)

R
S

S
 (

M
B

)

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.35: Count - Resident Set Size of the indexes on boost and bwa



7.2. Repetitive Text Collections 151

● ● ● ● ● ● ● ● ●

2 4 6 8 10

5
10

15
20

25
30

35
einstein − count

Resident Set Size

log2(pattern length)

R
S

S
 (

M
B

)

● ● ● ● ● ● ● ● ●

2 4 6 8 10

5
10

15
20

25
30

35

earth − count
Resident Set Size

log2(pattern length)
R

S
S

 (
M

B
)

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.36: Count - Resident Set Size of the indexes on einstein and earth

● ● ● ● ● ● ● ● ●

2 4 6 8 10

5
10

15
20

25
30

35

bush − count
Resident Set Size

log2(pattern length)

R
S

S
 (

M
B

)

● ● ● ● ● ● ● ● ●

2 4 6 8 10

5
10

15
20

25
30

35

wikipedia − count
Resident Set Size

log2(pattern length)

R
S

S
 (

M
B

)

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.37: Count - Resident Set Size of the indexes on bush and wikipedia



152 7. Experimental Results

● ● ● ● ● ● ● ● ●

2 4 6 8 10

20
40

60
80

cere − locate
Resident Set Size

log2(pattern length)

R
S

S
 (

M
B

)

● ● ● ● ● ● ● ● ●

2 4 6 8 10

20
40

60
80

para − locate
Resident Set Size

log2(pattern length)

R
S

S
 (

M
B

)

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.38: Locate - Resident Set Size of the indexes on cere and para

● ● ● ● ● ● ● ● ●

2 4 6 8 10

10
20

30
40

influenzae − locate
Resident Set Size

log2(pattern length)

R
S

S
 (

M
B

)

● ● ● ● ● ● ● ● ●

2 4 6 8 10

10
20

30
40

escherichia − locate
Resident Set Size

log2(pattern length)

R
S

S
 (

M
B

)

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.39: Locate - Resident Set Size of the indexes on influenzae and escherichia



7.2. Repetitive Text Collections 153

● ● ● ● ● ● ● ● ●

2 4 6 8 10

5
10

15
20

25
30

35
sdsl − locate

Resident Set Size

log2(pattern length)

R
S

S
 (

M
B

)

● ● ● ● ● ● ● ● ●

2 4 6 8 10

5
10

15
20

25
30

35

samtools − locate
Resident Set Size

log2(pattern length)
R

S
S

 (
M

B
)

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.40: Locate - Resident Set Size of the indexes on sdsl and samtools

● ● ● ● ● ● ● ● ●

2 4 6 8 10

5
10

15
20

25
30

boost − locate
Resident Set Size

log2(pattern length)

R
S

S
 (

M
B

)

● ● ● ● ● ● ● ● ●

2 4 6 8 10

5
10

15
20

25
30

bwa − locate
Resident Set Size

log2(pattern length)

R
S

S
 (

M
B

)

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.41: Locate - Resident Set Size of the indexes on boost and bwa



154 7. Experimental Results

● ● ● ● ● ● ● ● ●

2 4 6 8 10

5
10

15
20

25
30

35
einstein − locate
Resident Set Size

log2(pattern length)

R
S

S
 (

M
B

)

● ● ● ● ● ● ● ● ●

2 4 6 8 10

5
10

15
20

25
30

35

earth − locate
Resident Set Size

log2(pattern length)
R

S
S

 (
M

B
)

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.42: Locate - Resident Set Size of the indexes on einstein and earth

● ● ● ● ● ● ● ● ●

2 4 6 8 10

10
15

20
25

30
35

bush − locate
Resident Set Size

log2(pattern length)

R
S

S
 (

M
B

)

● ● ● ● ● ● ● ● ●

2 4 6 8 10

10
15

20
25

30
35

wikipedia − locate
Resident Set Size

log2(pattern length)

R
S

S
 (

M
B

)

● fmi−rrr rlcsa lzi s−rlbwt slz−rlbwt

Figure 7.43: Locate - Resident Set Size of the indexes on bush and wikipedia



7.2. Repetitive Text Collections 155

2 4 6 8 10

−
10

−
8

−
6

−
4

−
2

0
2

wikipedia − locate
rlcsa vs slz−rlbwt using same working space

running times per pattern

log2(pattern length)

tim
e 

pe
r 

pa
tte

rn
 (

lo
g 2

(s
))

rlcsa slz−rlbwt

Figure 7.44: For a more fair comparison, we tested rlcsa and slz-rlbwt on locate queries on
the wikipedia dataset choosing the sample rate for rlcsa in such a way that its final size matched
that of slz-rlbwt. With a sample rate of 2200 for rlcsa and of 512 for slz-rlbwt, both indexes’
sizes were approximately 4 MB. rlcsa is still the fastest index, supporting locate queries from
25 to 210 times faster than slz-rlbwt.



156 7. Experimental Results



8
Conclusions

In this thesis, we presented a framework of algorithms and data structures to compress and
index text within compressed working space. We provided two algorithms computing a
(entropy/run-length) compressed Burrows-Wheeler transform of the text, three algorithms
computing the LZ77 factorization in (entropy/run-length) compressed working space, two
algorithms to convert between LZ77 and run-length BWT within asymptotically optimal
working space, and two full-text indexes for repetitive text collections. We moreover pre-
sented a C++ framework—DYNAMIC—implementing compressed dynamic data structures
and proved (in theory and practice) tight bounds for the resources used by its components.
All compression algorithms discussed in the thesis have been implemented using DYNAMIC.
Our indexes for repetitive text collections were instead implemented using the succinct
data structures library sdsl [43].

Theory On the theoretical side, our compression tools are among the first algorithms
solving these problems within compressed working space. In particular, rle-lz77-1 and
rle-lz77-2 are the first LZ77-factorization algorithms geared towards the compression of
highly repetitive datasets and able to achieve exponentially-compressed working space on
very repetitive sequences. h0-lz77 and cw-bwt are, on the other hand, the first LZ77 and
BWT algorithms working in entropy-compressed space within O(n log n) and O(n log σ)
time, respectively (in the latter case, this running time is achieved only under the hypoth-
esis of near-uniform text distribution).

Our algorithms to convert between run-length BWT and LZ77 in O(r + z) working
space are the firsts of their kind. With these results, we extend the applicability of
algorithms that can work only starting from one of the two compression formats (e.g.
some indexing algorithms). In particular, using these results we showed—for the first
time—that indexes based on LZ77 and RLBWT can be built in repetition-aware working
space, i.e. up to exponentially less space than the text on very repetitive inputs.

Finally, our s-rlbwt and slz-rlbwt indexex are the firsts able to index the run-
length Burrows-Wheeler transform in optimal space, and—in the second case—compress
the suffix array sampling in a repetition-aware manner with the LZ77 scheme. Both
indexes achieve optimal space usage with only a small penalty in query times with respect
to the rlcsa index. Our most space-efficient index—slz-rlbwt—uses roughly 4|LZ77-
d|+|RLBWT| space, i.e. 4 times the output of the LZ77-d factorization (whose size—as
we showed—is several times smaller than that of the standard LZ77 factorization) plus
the size of a run-length BWT. In practice—see below—this space is always very close to
the most space-efficient index for repetitive text collections to date (i.e. the LZ77-index).



158 8. Conclusions

Practice Strong emphasis in this thesis was given to practice. With our DYNAMIC library
we presented a new practical way of approaching succinctness in dynamic structures. Our
SPSI (Searchable Partial Sums with Inserts) structure uses small space on top of the
information-theoretic lower bound and supports logarithmic-time queries. We moreover
show a practical reduction of the (gap-encoded/succinct) bitvector problem to the SPSI
problem. DYNAMIC is the first freely available library offering many useful compressed dy-
namic structures: SPSIs, (gap-encoded, succinct) bitvectors, (succinct, entropy/run-length
compressed) strings, (entropy/run-length compressed) FM-indexes. In practice, memory
usage and running times of our structures follow very closely theoretical predictions.

Many things can be improved in our library. First of all, support for delete operations
(not considered in this work as not needed in our algorithms). Then, a memory allocator
as the one considered by Cordova and Navarro [21] to deal with memory fragmentation
(accounting for most of the overhead of our structures on top of the allocated memory).
Dynamic geometric structures (e.g. range search) and batch insert operations would also
be interesting extensions of the library.

In our experiments, our repetition-aware compression algorithms rle-bwt, rle-lz77-1,
and rle-lz77-2 used up to three orders of magnitude less space than classic linear-space
algorithms on highly repetitive datasets. To the best of our knowledge, this is the first time
such a result is achieved, both from the theoretical and practical standpoint. The penalty
our algorithms pay for working in such a small space is increased running times, which are
up to three orders of magnitude higher than those of classical algorithms performing the
same tasks. An interesting extension is therefore that of making these algorithms practi-
cal. We note that the bottleneck in our repetition-aware algorithms is the space-efficient
construction of the run-length Burrows-Wheeler transform: this task requires to perform n
insert queries, which we proved (Chapter 7) to be one to two orders of magnitude slower
than access and rank queries on our dynamic strings. We anticipate that we are working
on a more practical solution to this problem based on merging two static RLBWTs.

To conclude, we proved our indexes s-rlbwt and slz-rlbwt to be extremely compet-
itive also in practice. In particular, the slz-rlbwt used—on average—a space only 1.1
times bigger than the lightest variant of the LZ77 index [67], i.e. the most space-efficient
index for repetitive text collections to date. In addition to this space efficiency, we showed
that slz-rlbwt supports count queries three orders of magnitude faster than the LZ77
index on all datasets and pattern lengths. The LZ77 index is, however, up to two orders
of magnitude faster than slz-rlbwt on locate queries on patterns smaller than 210.

8.1 Future Directions of Research

From the development of the first full-text indexes in the early 70’s, the areas of text
compression and indexing have been the subjects of many exciting breakthroughs. Nowa-
days, we acknowledge that problems such as compression and indexing are two sides of
the same coin: this remarkable connection allowed us to design advanced compressed full-
text indexes supporting extremely fast pattern matching queries while occupying a space
that could be thousands of times smaller than the plain text. Yet, much research is still
going on in the field. Fully-dynamic compressed indexes (i.e. indexes supporting indels at
any text position), as an instance, are attracting a lot of attention as they would remove
the need of working on uncompressed files and then compressing/indexing them. Using a



8.1. Future Directions of Research 159

dynamic compressed indexes, data would be compressed and indexed for the whole time
of its existence. Pushing further this concept, one could even imagine entire databases
and filesystems based on this idea: systems based on this technology would offer better
performance (e.g. faster file search and edits) while—at the same time—efficiently stor-
ing the data in a compressed form. To date, few fully-dynamic compressed indexes have
been designed, but they are either too slow in practice or too complicated to implement
(see [117] and Section 6.3.3). This consideration brings up a related problem: can com-
pressed dynamic data structures be practical, in addition to being theoretical appealing?
As this thesis proved, straightforward implementations making use of balanced trees do
not meet this criteria, as they are orders of magnitude slower than their static counterparts
(despite offering very similar theoretical performance).

Another fascinating problem—which is lately attracting a lot of research—is that of
compressing (and indexing) structured data such as graphs or sets of multi-dimensional
points. Graphs are challenging for standard text-based compression algorithms due to their
inherent non-linear structure. Considering the hardness of problems such as graph and
subgraph isomorphism, however, optimally identifying repetitions in graphs is just a too
complicated task to be solved in an exact manner. Sub-optimal grammar-based techniques
(such as Re-Pair) have already been developed to tackle the problem (see, e.g. [17]).
Alternatively, one could focus on easier-to-treat graph topologies. Extensions of LZ77 on
labeled trees are currently being investigated, and techniques such as tree grammars [71,72]
and top trees [9] have been shown to be particularly efficient in compressing this class of
objects. On the graph-indexing side, recently there have been interesting advances. Given
a labeled graph, a graph index is a data structure that supports fast pattern matching
queries on paths of the graph. An optimal-space and fast extension of the Burrows-Wheeler
transform for labeled trees has been recently described [32]. There even exists a version of
the BWT for directed acyclic graphs [112], but it suffers from exponential blowup in size
(with respect to the input graph size) in the worst case.

The optimization of existing indexes also offers exciting lines of research. In particular:
can we support locate in optimal O(m + occ) time within O(nHk) bits of space? can
we support efficient random access (e.g. in logarithmic time) within O(z) words of space?
can Lempel-Ziv indexes be augmented to support efficient count within asymptotically
optimal working space? Does there exist a general sampling mechanism for the BWT
taking O(r) words of space? (note that the sampling of Section 4.3.1 is not general as it
supports only locating at least one pattern occurrence).

Index construction and text compression in optimal time and space is also still an open
problem for several compression schemes. As shown in this thesis, the LZ77 factorization
can be computed in O(r) words of space. On certain classes of texts, this space is even
asymptotically smaller than z (see Section 5.1). However, for many texts of practical
interest, z is often smaller than r. An open question remains, therefore, whether LZ77 can
be computed efficiently within O(z) words of working space (see [39] for approximations
of LZ77 within this working space). Analogously, very recently it has been shown [6, 82]
that FM indexes can be computed in linear time and compact working space. Can the
same task be performed in the same time within O(nHk) bits of space? Similar questions
arise in the field of grammar compression. To date, the most space-efficient algorithm
computing the Re-Pair compression scheme uses n +

√
n words of space on top of the

input [10]. This is even asymptotically bigger than the sheer size of the plain text, and
could be thousands of times larger than the final compressed representation if the text is



160 8. Conclusions

very repetitive. In general, fast compression within asymptotically-optimal working space
is still an open and intriguing problem for many compression schemes.



Bibliography

[1] R. A. Baeza-Yates and G. H. Gonnet. A New Approach to Text Searching. In
Proceedings of the 12th Annual International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’89, pages 168–175, New York,
NY, USA, 1989. ACM.

[2] Hideo Bannai, Pawe l Gawrychowski, Shunsuke Inenaga, and Masayuki Takeda. Con-
verting SLP to LZ78 in almost Linear Time. In Combinatorial Pattern Matching,
pages 38–49. Springer, 2013.

[3] Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda. Efficient LZ78 factorization
of grammar compressed text. In String Processing and Information Retrieval, pages
86–98. Springer, 2012.

[4] Djamal Belazzougui. Linear time construction of compressed text indices in compact
space. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing,
pages 148–193. ACM, 2014.

[5] Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza, and Mathieu Raf-
finot. Composite repetition-aware data structures. In Proc. CPM, pages 26–39,
2015.

[6] Djamal Belazzougui, Fabio Cunial, Juha Kärkkäinen, and Veli Mäkinen. Linear-time
string indexing and analysis in small space. arXiv preprint arXiv:1609.06378, 2016.

[7] Djamal Belazzougui and Simon J Puglisi. Range predecessor and Lempel-Ziv pars-
ing. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 2053–2071. SIAM, 2016.

[8] Timo Beller, Maike Zwerger, Simon Gog, and Enno Ohlebusch. Space-efficient con-
struction of the Burrows-Wheeler transform. In String Processing and Information
Retrieval, pages 5–16. Springer, 2013.

[9] Philip Bille, Inge Li Gørtz, Gad M Landau, and Oren Weimann. Tree compression
with top trees. Information and Computation, 243:166–177, 2015.

[10] Philip Bille, Inge Li Gørtz, and Nicola Prezza. Space-Efficient Re-Pair Compression.
In Data Compression Conference (DCC), 2017. IEEE, 2017.

[11] Michael Burrows and David J Wheeler. A block-sorting lossless data compression
algorithm, 1994.

[12] Ho-Leung Chan, Wing-Kai Hon, Tak-Wah Lam, and Kunihiko Sadakane. Com-
pressed indexes for dynamic text collections. ACM Transactions on Algorithms
(TALG), 3(2):21, 2007.



162 Bibliography

[13] Moses Charikar, Eric Lehman, Ding Liu, Rina Panigrahy, Manoj Prabhakaran, Amit
Sahai, and Abhi Shelat. The smallest grammar problem. Information Theory, IEEE
Transactions on, 51(7):2554–2576, 2005.

[14] David Clark. Compact Pat trees. PhD thesis, PhD thesis, University of Waterloo,
1998.

[15] Francisco Claude. libcds: compact data structures library. https://github.com/

fclaude/libcds. Accessed: 2016-11-17.

[16] Francisco Claude, Antonio Farina, Miguel A Mart́ınez-Prieto, and Gonzalo Navarro.
Universal indexes for highly repetitive document collections. Information Systems,
61:1–23, 2016.

[17] Francisco Claude and Gonzalo Navarro. A fast and compact Web graph representa-
tion. In International Symposium on String Processing and Information Retrieval,
pages 118–129. Springer, 2007.

[18] Francisco Claude and Gonzalo Navarro. Self-indexed text compression using straight-
line programs. In International Symposium on Mathematical Foundations of Com-
puter Science, pages 235–246. Springer, 2009.

[19] Francisco Claude and Gonzalo Navarro. Self-indexed grammar-based compression.
Fundamenta Informaticae, 111(3):313–337, 2011.

[20] Francisco Claude and Gonzalo Navarro. Improved grammar-based compressed in-
dexes. In International Symposium on String Processing and Information Retrieval,
pages 180–192. Springer, 2012.

[21] Joshimar Cordova and Gonzalo Navarro. Practical dynamic entropy-compressed
bitvectors with applications. In International Symposium on Experimental Algo-
rithms, pages 105–117. Springer, 2016.

[22] Maxime Crochemore and Lucian Ilie. Computing longest previous factor in linear
time and applications. Information Processing Letters, 106(2):75–80, 2008.

[23] Maxime Crochemore, Lucian Ilie, and William F Smyth. A simple algorithm for
computing the Lempel-Ziv factorization. In 18th Data Compression Conference
(DCC’08), pages 482–488. IEEE Computer Society Press, Los Alamitos, CA, 2008.

[24] Nicolaas Govert de Bruijn and Paul Erdos. A combinatorial problem. Koninklijke
Nederlandse Akademie v. Wetenschappen, 49(49):758–764, 1946.

[25] ds-vector: C++ library for dynamic succinct vector. https://code.google.com/

archive/p/ds-vector/. Accessed: 2016-11-17.

[26] Peter Elias. Efficient storage and retrieval by content and address of static files.
Journal of the ACM (JACM), 21(2):246–260, 1974.

[27] Peter Elias. Universal codeword sets and representations of the integers. IEEE
transactions on information theory, 21(2):194–203, 1975.

https://github.com/fclaude/libcds
https://github.com/fclaude/libcds
https://code.google.com/archive/p/ds-vector/
https://code.google.com/archive/p/ds-vector/


Bibliography 163

[28] Robert Mario Fano. On the number of bits required to implement an associative
memory. Massachusetts Institute of Technology, Project MAC, 1971.

[29] Paolo Ferragina, Travis Gagie, and Giovanni Manzini. Lightweight data indexing
and compression in external memory. Algorithmica, 63(3):707–730, 2012.

[30] Paolo Ferragina, Raffaele Giancarlo, and Giovanni Manzini. The myriad virtues of
wavelet trees. Information and Computation, 207(8):849–866, 2009.

[31] Paolo Ferragina, Raffaele Giancarlo, Giovanni Manzini, and Marinella Sciortino.
Boosting textual compression in optimal linear time. Journal of the ACM (JACM),
52(4):688–713, 2005.

[32] Paolo Ferragina, Fabrizio Luccio, Giovanni Manzini, and S Muthukrishnan. Com-
pressing and indexing labeled trees, with applications. Journal of the ACM (JACM),
57(1):4, 2009.

[33] Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with ap-
plications. In Foundations of Computer Science, 2000. Proceedings. 41st Annual
Symposium on, pages 390–398. IEEE, 2000.

[34] Paolo Ferragina and Giovanni Manzini. Indexing compressed text. Journal of the
ACM (JACM), 52(4):552–581, 2005.

[35] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. An
alphabet-friendly FM-index. In String Processing and Information Retrieval, pages
150–160. Springer, 2004.

[36] Paolo Ferragina, Giovanni Manzini, Veli Mäkinen, and Gonzalo Navarro. An
alphabet-friendly FM-index. In String Processing and Information Retrieval, pages
150–160. Springer, 2004.

[37] Paolo Ferragina and Gonzalo Navarro. Pizza&Chili corpus. http://pizzachili.

dcc.uchile.cl. Accessed: 2016-07-25.

[38] Gabriele Fici. Factorizations of the Fibonacci Infinite Word. Journal of Integer
Sequences, 18(2):3, 2015.

[39] Johannes Fischer, Travis Gagie, Pawe l Gawrychowski, and Tomasz Kociumaka. Ap-
proximating LZ77 via small-space multiple-pattern matching. In Algorithms-ESA
2015, pages 533–544. Springer, 2015.

[40] Michael Fredman and Michael Saks. The cell probe complexity of dynamic data
structures. In Proceedings of the twenty-first annual ACM symposium on Theory of
computing, pages 345–354. ACM, 1989.

[41] Travis Gagie. Large alphabets and incompressibility. Information Processing Letters,
99(6):246–251, 2006.

[42] Nicola Gigante. bitvector: succinct dynamic bitvector implementation. https:

//github.com/nicola-gigante/bitvector. Accessed: 2016-11-17.

http://pizzachili.dcc.uchile.cl
http://pizzachili.dcc.uchile.cl
https://github.com/nicola-gigante/bitvector
https://github.com/nicola-gigante/bitvector


164 Bibliography

[43] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to prac-
tice: Plug and play with succinct data structures. In 13th International Symposium
on Experimental Algorithms, (SEA 2014), pages 326–337, 2014.

[44] Gaston H Gonnet, Ricardo A Baeza-Yates, and Tim Snider. New Indices for Text:
Pat Trees and Pat Arrays. Information Retrieval: Data Structures & Algorithms,
66:82, 1992.

[45] Rodrigo González and Gonzalo Navarro. Rank/select on dynamic compressed se-
quences and applications. Theoretical Computer Science, 410(43):4414–4422, 2009.

[46] Keisuke Goto, Shirou Maruyama, Shunsuke Inenaga, Hideo Bannai, Hiroshi
Sakamoto, and Masayuki Takeda. Restructuring compressed texts without explicit
decompression. arXiv preprint arXiv:1107.2729, 2011.

[47] Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-
compressed text indexes. In Proceedings of the fourteenth annual ACM-SIAM sym-
posium on Discrete algorithms, pages 841–850. Society for Industrial and Applied
Mathematics, 2003.

[48] Ankur Gupta, Wing-Kai Hon, Rahul Shah, and Jeffrey Scott Vitter. Compressed
data structures: Dictionaries and data-aware measures. In Data Compression Con-
ference (DCC’06), pages 213–222. IEEE, 2006.

[49] Meng He and J Ian Munro. Succinct representations of dynamic strings. In String
Processing and Information Retrieval, pages 334–346. Springer, 2010.

[50] Danny Hucke, Markus Lohrey, and Carl Philipp Reh. The smallest grammar prob-
lem revisited. In International Symposium on String Processing and Information
Retrieval, pages 35–49. Springer, 2016.

[51] David A Huffman et al. A method for the construction of minimum-redundancy
codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[52] Guy Joseph Jacobson. Succinct static data structures. PhD thesis, Carnegie Mellon
University, 1988.

[53] Artur Jeż. Recompression: Word equations and beyond. In International Conference
on Developments in Language Theory, pages 12–26. Springer, 2013.

[54] Artur Jeż. Approximation of grammar-based compression via recompression. The-
oretical Computer Science, 592:115–134, 2015.

[55] Artur Jeż. Faster fully compressed pattern matching by recompression. ACM Trans-
actions on Algorithms (TALG), 11(3):20, 2015.

[56] Artur Jeż. Recompression: a simple and powerful technique for word equations.
Journal of the ACM (JACM), 63(1):4, 2016.

[57] Juha Kärkkäinen, Dominik Kempa, and Simon J Puglisi. Lightweight Lempel-Ziv
parsing. In Experimental Algorithms, pages 139–150. Springer, 2013.



Bibliography 165

[58] Juha Kärkkäinen, Dominik Kempa, and Simon J Puglisi. Linear time Lempel-Ziv
factorization: Simple, fast, small. In Combinatorial Pattern Matching, pages 189–
200. Springer, 2013.

[59] Juha Kärkkäinen and Simon J Puglisi. Fixed block compression boosting in FM-
indexes. In International Symposium on String Processing and Information Re-
trieval, pages 174–184. Springer, 2011.

[60] Juha Kärkkäinen and Esko Ukkonen. Lempel-Ziv parsing and sublinear-size index
structures for string matching. In Proc. 3rd South American Workshop on String
Processing (WSP’96. Citeseer, 1996.

[61] Dominik Kempa and Simon J Puglisi. Lempel-Ziv factorization: Simple, fast, prac-
tical. In Proceedings of the Meeting on Algorithm Engineering & Expermiments,
pages 103–112. Society for Industrial and Applied Mathematics, 2013.

[62] Patrick Klitzke and Patrick K Nicholson. A general framework for dynamic succinct
and compressed data structures. Proceedings of the 18th ALENEX, pages 160–173,
2016.

[63] S Rao Kosaraju and Giovanni Manzini. Compression of Low Entropy Strings with
Lempel–Ziv Algorithms. SIAM Journal on Computing, 29(3):893–911, 2000.

[64] Sebastian Kreft. LZ77 index. http://pizzachili.dcc.uchile.cl/indexes/

LZ77-index/. Accessed: 2016-11-25.

[65] Sebastian Kreft and Gonzalo Navarro. Self-index based on LZ77 (MSc thesis). arXiv
preprint arXiv:1112.4578, 2011.

[66] Sebastian Kreft and Gonzalo Navarro. Self-indexing based on LZ77. In Combinato-
rial Pattern Matching, pages 41–54. Springer, 2011.

[67] Sebastian Kreft and Gonzalo Navarro. On compressing and indexing repetitive
sequences. Theoretical Computer Science, 483:115–133, 2013.

[68] Tak Wah Lam, Ruiqiang Li, Alan Tam, Simon Wong, Edward Wu, and Siu-Ming
Yiu. High throughput short read alignment via bi-directional BWT. In Bioinfor-
matics and Biomedicine, 2009. BIBM’09. IEEE International Conference on, pages
31–36. IEEE, 2009.

[69] Abraham Lempel and Jacob Ziv. On the complexity of finite sequences. Information
Theory, IEEE Transactions on, 22(1):75–81, 1976.

[70] Ross A Lippert, Clark M Mobarry, and Brian P Walenz. A space-efficient construc-
tion of the Burrows-Wheeler transform for genomic data. Journal of Computational
Biology, 12(7):943–951, 2005.

[71] Markus Lohrey. Grammar-based tree compression. In International Conference on
Developments in Language Theory, pages 46–57. Springer, 2015.

[72] Markus Lohrey, Sebastian Maneth, and Roy Mennicke. Tree structure compression
with repair. In Data Compression Conference (DCC), 2011, pages 353–362. IEEE,
2011.

http://pizzachili.dcc.uchile.cl/indexes/LZ77-index/
http://pizzachili.dcc.uchile.cl/indexes/LZ77-index/


166 Bibliography

[73] LZ77 factorization algorithms. https://www.cs.helsinki.fi/group/pads/lz77.

html. Accessed: 2016-05-20.

[74] Veli Mäkinen and Gonzalo Navarro. Implicit compression boosting with applications
to self-indexing. In International Symposium on String Processing and Information
Retrieval, pages 229–241. Springer, 2007.

[75] Veli Mäkinen and Gonzalo Navarro. Rank and select revisited and extended. Theo-
retical Computer Science, 387(3):332–347, 2007.

[76] Veli Mäkinen and Gonzalo Navarro. Dynamic entropy-compressed sequences and
full-text indexes. ACM Transactions on Algorithms (TALG), 4(3):32, 2008.

[77] Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and re-
trieval of highly repetitive sequence collections. Journal of Computational Biology,
17(3):281–308, 2010.

[78] Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches.
In First Annual ACM-SIAM Symposium on Discrete Algorithms, pages 319–327.
ACM, 1990.

[79] Sabrina Mantaci, Antonio Restivo, and Marinella Sciortino. Burrows–Wheeler trans-
form and Sturmian words. Information Processing Letters, 86(5):241–246, 2003.

[80] Giovanni Manzini. An analysis of the Burrows-Wheeler transform. Journal of the
ACM (JACM), 48(3):407–430, 2001.

[81] Y Mori. Short description of improved two-stage suffix sorting algorithm, 2005.

[82] J Ian Munro, Gonzalo Navarro, and Yakov Nekrich. Space-efficient construction of
compressed indexes in deterministic linear time. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 408–424. SIAM,
2017.

[83] Gonzalo Navarro. Indexing text using the Ziv-Lempel trie. Journal of Discrete
Algorithms, 2(1):87–114, 2004.

[84] Gonzalo Navarro. Wavelet trees for all. Journal of Discrete Algorithms, 25:2–20,
2014.

[85] Gonzalo Navarro. Compact Data Structures: A Practical Approach. Cambridge
University Press, 2016.

[86] Gonzalo Navarro. A self-index on block trees. arXiv preprint arXiv:1606.06617,
2016.

[87] Gonzalo Navarro and Yakov Nekrich. Optimal dynamic sequence representations.
SIAM Journal on Computing, 43(5):1781–1806, 2014.

[88] Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic suc-
cinct trees. ACM Transactions on Algorithms (TALG), 10(3):16, 2014.

https://www.cs.helsinki.fi/group/pads/lz77.html
https://www.cs.helsinki.fi/group/pads/lz77.html


Bibliography 167

[89] Takaaki Nishimoto, Shunsuke Inenaga, Hideo Bannai, Masayuki Takeda, et al. Dy-
namic index, LZ factorization, and LCE queries in compressed space. arXiv preprint
arXiv:1504.06954, 2015.

[90] Ge Nong, Sen Zhang, and Wai Hong Chan. Linear suffix array construction by
almost pure induced-sorting. In Data Compression Conference, 2009. DCC’09.,
pages 193–202. IEEE, 2009.

[91] Enno Ohlebusch and Simon Gog. Lempel-Ziv factorization revisited. In Combina-
torial Pattern Matching, pages 15–26. Springer, 2011.

[92] Daisuke Okanohara and Kunihiko Sadakane. Practical entropy-compressed rank/s-
elect dictionary. In Proceedings of the Meeting on Algorithm Engineering & Exper-
miments, pages 60–70. Society for Industrial and Applied Mathematics, 2007.

[93] Daisuke Okanohara and Kunihiko Sadakane. An online algorithm for finding the
longest previous factors. In Algorithms-ESA 2008, pages 696–707. Springer, 2008.

[94] Alessio Orlandi. Advanced rank/select data structures: succinctness, bounds, and
applications. PhD thesis, Ph. D. thesis, 2012.

[95] Giuseppe Ottaviano. succinct library. https://github.com/ot/succinct. Ac-
cessed: 2016-11-17.

[96] Nicola Prezza. BWTIL: static succinct data structures. https://github.com/

nicolaprezza/BWTIL. Accessed: 2016-11-17.

[97] Nicola Prezza. DYNAMIC: dynamic succinct/compressed data structures library.
https://github.com/nicolaprezza/DYNAMIC. Accessed: 2016-11-17.

[98] Nicola Prezza. FMI: a wrapper on sdsl’s FM-index. https://github.com/

nicolaprezza/FMI. Accessed: 2016-11-25.

[99] Nicola Prezza. get-git-revisions: Get all revisions of a git repository. https://

github.com/nicolaprezza/get-git-revisions. Accessed: 2016-11-17.

[100] Nicola Prezza. lz-rlbwt: Run-length compressed BWT with LZ77 sampled suffix
array. https://github.com/nicolaprezza/lz-rlbwt. Accessed: 2016-11-17.

[101] Nicola Prezza. s-rlbwt: Sparse run-length compressed BWT. https://github.com/
nicolaprezza/s-rlbwt. Accessed: 2016-11-25.

[102] Nicola Prezza. slz-rlbwt: Run-length compressed BWT with sparse LZ77 sampled
suffix array. https://github.com/nicolaprezza/slz-rlbwt. Accessed: 2016-12-
7.

[103] Nicola Prezza. wiki-get: Download all versions of a Wikipedia page. https://

github.com/nicolaprezza/wiki_get. Accessed: 2016-11-17.

[104] Rajeev Raman, Venkatesh Raman, and S Srinivasa Rao. Succinct dynamic data
structures. In Algorithms and Data Structures, pages 426–437. Springer, 2001.

https://github.com/ot/succinct
https://github.com/nicolaprezza/BWTIL
https://github.com/nicolaprezza/BWTIL
https://github.com/nicolaprezza/DYNAMIC
https://github.com/nicolaprezza/FMI
https://github.com/nicolaprezza/FMI
https://github.com/nicolaprezza/get-git-revisions
https://github.com/nicolaprezza/get-git-revisions
https://github.com/nicolaprezza/lz-rlbwt
https://github.com/nicolaprezza/s-rlbwt
https://github.com/nicolaprezza/s-rlbwt
https://github.com/nicolaprezza/slz-rlbwt
https://github.com/nicolaprezza/wiki_get
https://github.com/nicolaprezza/wiki_get


168 Bibliography

[105] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable
dictionaries with applications to encoding k-ary trees, prefix sums and multisets.
ACM Transactions on Algorithms (TALG), 3(4):43, 2007.

[106] Wojciech Rytter. Application of Lempel–Ziv factorization to the approximation of
grammar-based compression. Theoretical Computer Science, 302(1):211–222, 2003.

[107] Kunihiko Sadakane. dbwt: direct construction of the BWT. http://researchmap.
jp/muuw41s7s-1587/#_1587. Accessed: 2016-11-17.

[108] Thomas Schnattinger, Enno Ohlebusch, and Simon Gog. Bidirectional search in a
string with wavelet trees. In Annual Symposium on Combinatorial Pattern Matching,
pages 40–50. Springer, 2010.

[109] Claude Elwood Shannon. A mathematical theory of communication. Bell System
Technical Journal, 27:379–656, 1948.

[110] Jouni Sirén. Run-Length compressed suffix array (RLCSA). http://jltsiren.

kapsi.fi/rlcsa. Accessed: 2016-11-17.

[111] Jouni Sirén. Compressed full-text indexes for highly repetitive collections. PhD thesis,
Helsingin yliopisto, 2012.

[112] Jouni Sirén, Niko Välimäki, and Veli Mäkinen. Indexing graphs for path queries
with applications in genome research. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 11(2):375–388, 2014.

[113] Victor Smirnov. Memoria: C++14 framework providing general purpose dynamic
data structures. https://bitbucket.org/vsmirnov/memoria/wiki/Home. Ac-
cessed: 2016-11-17.

[114] Tatiana Starikovskaya. Computing Lempel-Ziv factorization online. In Mathematical
Foundations of Computer Science 2012, pages 789–799. Springer, 2012.

[115] Yoshimasa Takabatake, Yasuo Tabei, and Hiroshi Sakamoto. Improved ESP-index:
a practical self-index for highly repetitive texts. In International Symposium on
Experimental Algorithms, pages 338–350. Springer, 2014.

[116] Yoshimasa Takabatake, Yasuo Tabei, and Hiroshi Sakamoto. Online self-indexed
grammar compression. In proc. SPIRE, volume 9309 of Lecture Notes in Computer
Science, pages 258–269. Springer International Publishing, 2015.

[117] Masayuki Takeda. Dynamic Index and LZ Factorization in Compressed Space. In
Prague Stringology Conference 2016, page 158, 2016.

[118] Yuya Tamakoshi, I Tomohiro, Shunsuke Inenaga, Hideo Bannai, and Masanori
Takeda. From run length encoding to LZ78 and back again. In Data Compres-
sion Conference (DCC), 2013, pages 143–152. IEEE, 2013.

[119] German Tischler. Faster average case low memory semi-external construction of the
Burrows-Wheeler transform. In CEUR Workshop Proceedings,, volume 1146, pages
61–68, 2014.

http://researchmap.jp/muuw41s7s-1587/#_1587
http://researchmap.jp/muuw41s7s-1587/#_1587
http://jltsiren.kapsi.fi/rlcsa
http://jltsiren.kapsi.fi/rlcsa
https://bitbucket.org/vsmirnov/memoria/wiki/Home


Bibliography 169

[120] Sebastiano Vigna. sux library. http://sux.di.unimi.it/. Accessed: 2016-11-17.

[121] Peter Weiner. Linear pattern matching algorithms. In Switching and Automata
Theory, 1973. SWAT’08. IEEE Conference Record of 14th Annual Symposium on,
pages 1–11. IEEE, 1973.

[122] Jun’ichi Yamamoto, Tomohiro I, Hideo Bannai, Shunsuke Inenaga, and Masayuki
Takeda. Faster Compact On-Line Lempel-Ziv Factorization. In 31st International
Symposium on Theoretical Aspects of Computer Science (STACS 2014), volume 25 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 675–686, Dagstuhl,
Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[123] Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data com-
pression. IEEE Transactions on information theory, 23(3):337–343, 1977.

[124] Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-
rate coding. Information Theory, IEEE Transactions on, 24(5):530–536, 1978.

http://sux.di.unimi.it/

	Introduction
	Motivation
	Contributions
	Papers
	Unpublished Results

	Outline
	Notation

	Indexing and Compression: a Tale of Time and Space
	A Gentle Introduction to Compressed Indexing
	Basic Concepts
	Entropy
	Burrows-Wheeler Transform
	Lempel-Ziv Parsing
	Full-Text Indexing
	Measuring Space
	Model of Computation

	Building Blocks
	Bitvectors
	Wavelet Trees
	Run-Length Compressed Strings
	Geometric Data Structures

	Compressed Full-Text Indexing
	FM-Indexes
	Run-Length Indexes
	LZ-Indexes

	Online Construction of the Burrows-Wheeler Transform

	Computing the BWT in Compressed Working Space
	Related Work
	High-Order Compressed Working Space
	Data Structures
	Cw-bwt Algorithm

	Run-Length Compressed Working Space
	The Searchable Partial Sums with Indels Problem
	Dynamic Gap-Encoded Bitvectors
	A Dynamic Run-Length BWT


	Computing LZ77 in Compressed Working Space
	Related Work
	Zero-Order Compressed Working Space
	Data Structures
	The Algorithm

	Run-Length Compressed Working Space
	First Algorithm: SA Sampling Based on BWT Runs
	Second Algorithm: SA Sampling Based on LZ77 Factors 


	Compressed Computation: Recompression and Indexing
	Repetitivity Measures: The r-z-g* Relations
	Recompression
	Related Work
	From RLBWT to LZ77
	From LZ77 to RLBWT

	Indexes For Highly Repetitive Text Collections
	Related Work: RLBWT-, LZ-, and Grammar- Indexes
	The s-rlbwt Index
	The slz-rlbwt Index


	From Theory to Practice: the DYNAMIC library
	Related Work
	The Core: Searchable Partial Sums with Inserts
	Data Structure
	Theoretical Guarantees

	Plug and Play with Dynamic Structures
	Gap-Encoded Bitvectors
	Succinct Bitvectors and Compressed Strings
	Dynamic FM-Indexes

	Compression Algorithms, in Practice
	cw-bwt: High-Order Compressed BWT
	rle-bwt: Run-Length Compressed BWT
	h0-lz77: Zero-Order Compressed LZ77
	rle-lz77: Run-Length Compressed LZ77


	Experimental Results
	DYNAMIC: Benchmarks
	Working Space
	Running Times

	Repetitive Text Collections
	Datasets
	Tested Algorithms and Indexes
	Results


	Conclusions
	Future Directions of Research

	Bibliography

